SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Vuckovic M.) "

Search: WFRF:(Vuckovic M.)

  • Result 1-29 of 29
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • Turcot, Valerie, et al. (author)
  • Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity
  • 2018
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:1, s. 26-41
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are similar to 10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed similar to 7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
  •  
5.
  •  
6.
  • Justice, Anne E., et al. (author)
  • Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution
  • 2019
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:3, s. 452-469
  • Journal article (peer-reviewed)abstract
    • Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF >= 5%) and nine low-frequency or rare (MAF < 5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
  •  
7.
  • Joshi, Peter K, et al. (author)
  • Directional dominance on stature and cognition in diverse human populations
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 523:7561, s. 459-462
  • Journal article (peer-reviewed)abstract
    • Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.
  •  
8.
  • Evangelou, Evangelos, et al. (author)
  • Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.
  • 2018
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 50:10, s. 1412-1425
  • Journal article (peer-reviewed)abstract
    • High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.
  •  
9.
  •  
10.
  • de Vries, Paul S., et al. (author)
  • Multiancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions
  • 2019
  • In: American Journal of Epidemiology. - : Oxford University Press. - 0002-9262 .- 1476-6256. ; 188:6, s. 1033-1054
  • Journal article (peer-reviewed)abstract
    • A person's lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interactions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a multiancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. We included 45 studies in stage 1 (genome-wide discovery) and 66 studies in stage 2 (focused follow-up), for a total of 394,584 individuals from 5 ancestry groups. Analyses covered the period July 2014-November 2017. Genetic main effects and interaction effects were jointly assessed by means of a 2-degrees-of-freedom (df) test, and a 1-df test was used to assess the interaction effects alone. Variants at 495 loci were at least suggestively associated (P < 1 x 10(-6)) with lipid levels in stage 1 and were evaluated in stage 2, followed by combined analyses of stage 1 and stage 2. In the combined analysis of stages 1 and 2, a total of 147 independent loci were associated with lipid levels at P < 5 x 10(-8) using 2-df tests, of which 18 were novel. No genome-wide-significant associations were found testing the interaction effect alone. The novel loci included several genes (proprotein convertase subtilisin/kexin type 5 (PCSK5), vascular endothelial growth factor B (VEGFB), and apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1) complementation factor (A1CF)) that have a putative role in lipid metabolism on the basis of existing evidence from cellular and experimental models.
  •  
11.
  • Wain, Louise V., et al. (author)
  • Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney
  • 2017
  • In: Hypertension. - 0194-911X .- 1524-4563. ; 70:3, s. e4-e19
  • Journal article (peer-reviewed)abstract
    • Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA. Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation.
  •  
12.
  •  
13.
  •  
14.
  • Smith, Jennifer A, et al. (author)
  • Genome-wide association study identifies 74 loci associated with educational attainment
  • 2016
  • In: Nature (London). - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 533:7604, s. 539-542
  • Journal article (peer-reviewed)abstract
    • Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases.
  •  
15.
  • Doherty, M., et al. (author)
  • Plasma N-glycans in colorectal cancer risk
  • 2018
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Journal article (peer-reviewed)abstract
    • Aberrant glycosylation has been associated with a number of diseases including cancer. Our aim was to elucidate changes in whole plasma W-glycosylation between colorectal cancer (CRC) cases and controls in one of the largest cohorts of its kind. A set of 633 CRC patients and 478 age and gender matched controls was analysed. Additionally, patients were stratified into four CRC stages. Moreover, W-glycan analysis was carried out in plasma of 40 patients collected prior to the initial diagnosis of CRC. Statistically significant differences were observed in the plasma N-glycome at all stages of CRC, this included a highly significant decrease in relation to the core fucosylated bi-antennary glycans F(6)A2G2 and F(6)A2G2S(6)1 (P < 0.0009). Stage 1 showed a unique biomarker signature compared to stages 2, 3 and 4. There were indications that at risk groups could be identified from the glycome (retrospective AUC = 0.77 and prospective AUC = 0.65). N-glycome biomarkers related to the pathogenic progress of the disease would be a considerable asset in a clinical setting and it could enable novel therapeutics to be developed to target the disease in patients at risk of progression.
  •  
16.
  • Bowden, John A., et al. (author)
  • Harmonizing lipidomics : NIST interlaboratory comparison exercise for lipidomics using SRM 1950-Metabolites in Frozen Human Plasma
  • 2017
  • In: Journal of Lipid Research. - 0022-2275 .- 1539-7262. ; 58:12, s. 2275-2288
  • Journal article (peer-reviewed)abstract
    • As the lipidomics field continues to advance, self-evaluation within the community is critical. Here, we performed an interlaboratory comparison exercise for lipidomics using Standard Reference Material (SRM) 1950-Metabolites in Frozen Human Plasma, a commercially available reference material. The interlaboratory study comprised 31 diverse laboratories, with each laboratory using a different lipidomics workflow. A total of 1,527 unique lipids were measured across all laboratories and consensus location estimates and associated uncertainties were determined for 339 of these lipids measured at the sum composition level by five or more participating laboratories. These evaluated lipids detected in SRM 1950 serve as community-wide benchmarks for intra-and interlaboratory quality control and method validation. These analyses were performed using nonstandardized laboratory-independent workflows. The consensus locations were also compared with a previous examination of SRM 1950 by the LIPID MAPS consortium.jlr While the central theme of the interlaboratory study was to provide values to help harmonize lipids, lipid mediators, and precursor measurements across the community, it was also initiated to stimulate a discussion regarding areas in need of improvement.
  •  
17.
  • Jones, M. I., et al. (author)
  • A hot Saturn on an eccentric orbit around the giant star K2-132
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 613
  • Journal article (peer-reviewed)abstract
    • Although the majority of radial velocity detected planets have been found orbiting solar-type stars, a fraction of them have been discovered around giant stars. These planetary systems have revealed different orbital properties when compared to solar-type star companions. In particular, radial velocity surveys have shown that there is a lack of giant planets in close-in orbits around giant stars, in contrast to the known population of hot Jupiters orbiting solar-type stars. It has been theorized that the reason for this distinctive feature in the semimajor axis distribution is the result of the stellar evolution and/or that it is due to the effect of a different formation/evolution scenario for planets around intermediate-mass stars. However, in the past few years a handful of transiting short-period planets (P less than or similar to 10 days) have been found around giant stars, thanks to the high-precision photometric data obtained initially by the Kepler mission, and later by its two-wheel extension K2. These new discoveries have allowed us for the first time to study the orbital properties and physical parameters of these intriguing and elusive substellar companions. In this paper we report on an independent discovery of a transiting planet in field 10 of the K2 mission, also reported recently by Grunblatt et al. (2017, AJ, 154, 254). The host star has recently evolved to the giant phase, and has the following atmospheric parameters: T-eff = 4878 +/- 70 K, log g = 3.289 +/- 0.004, and [Fe/H] = 0.11 +/- 0.05 dex. The main orbital parameters of K2-132 b, obtained with all the available data for the system are: P = 9.1708 +/- 0.0025 d, e = 0.290 +/- 0.049, M-p = 0.495 +/- 0.007 M-J and R-p = 1.089 +/- 0.006 R-J. This is the fifth known planet orbiting any giant star with a < 0 : 1, and the most eccentric one among them, making K2-132 b a very interesting object.
  •  
18.
  • Gorski, Mathias, et al. (author)
  • 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function.
  • 2017
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Journal article (peer-reviewed)abstract
    • HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10(-8) previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples.
  •  
19.
  • Schumann, Gunter, et al. (author)
  • KLB is associated with alcohol drinking, and its gene product beta-Klotho is necessary for FGF21 regulation of alcohol preference
  • 2016
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113:50, s. 14372-14377
  • Journal article (peer-reviewed)abstract
    • Excessive alcohol consumption is a major public health problem worldwide. Although drinking habits are known to be inherited, few genes have been identified that are robustly linked to alcohol drinking. We conducted a genome-wide association metaanalysis and replication study among >105,000 individuals of European ancestry and identified beta-Klotho (KLB) as a locus associated with alcohol consumption (rs11940694; P = 9.2 x 10(-12)). beta-Klotho is an obligate coreceptor for the hormone FGF21, which is secreted from the liver and implicated in macronutrient preference in humans. We show that brain-specific beta-Klotho KO mice have an increased alcohol preference and that FGF21 inhibits alcohol drinking by acting on the brain. These data suggest that a liver-brain endocrine axis may play an important role in the regulation of alcohol drinking behavior and provide a unique pharmacologic target for reducing alcohol consumption.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  • Lagoudakis, K. G., et al. (author)
  • Ultrafast coherent manipulation of trions in site-controlled nanowire quantum dots
  • 2016
  • In: Optica. - : Optical Society of America. - 2334-2536. ; 3:12, s. 1430-1435
  • Journal article (peer-reviewed)abstract
    • Physical implementations of large-scale quantum processors based on solid-state platforms benefit from realizations of quantum bits positioned in regular arrays. Self-assembled quantum dots are well established as promising candidates for quantum optics and quantum information processing, but they are randomly positioned. Site-controlled quantum dots, on the other hand, are grown in pre-defined locations but have not yet been sufficiently developed to be used as a platform for quantum information processing. In this paper, we demonstrate all-optical ultrafast complete coherent control of a qubit formed by the single-spin/trion states of a charged site-controlled nanowire quantum dot. Our results show that site-controlled quantum dots in nanowires are promising hosts of charged-exciton qubits and that these qubits can be cleanly manipulated in the same fashion as has been demonstrated in randomly positioned quantum dot samples. Our findings suggest that many of the related excitonic qubit experiments that have been performed over the past 15 years may work well in the more scalable, site-controlled systems, making them very promising for the realization of quantum hardware.
  •  
24.
  • Lukin, Daniil M., et al. (author)
  • Spectrally reconfigurable quantum emitters enabled by optimized fast modulation
  • 2020
  • In: NPJ QUANTUM INFORMATION. - : NATURE PUBLISHING GROUP. - 2056-6387. ; 6:1
  • Journal article (peer-reviewed)abstract
    • The ability to shape photon emission facilitates strong photon-mediated interactions between disparate physical systems, thereby enabling applications in quantum information processing, simulation and communication. Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is particularly attractive for realizing such applications on-chip. Here we propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission. Using a scattering-matrix formalism, we find that a two-level system, when modulated faster than its optical lifetime, can be treated as a single-photon source with a widely reconfigurable photon spectrum that is amenable to standard numerical optimization techniques. To enable the experimental demonstration of this spectral control scheme, we investigate the Stark tuning properties of the silicon vacancy in silicon carbide, a color center with promise for optical quantum information processing technologies. We find that the silicon vacancy possesses excellent spectral stability and tuning characteristics, allowing us to probe its fast modulation regime, observe the theoretically-predicted two-photon correlations, and demonstrate spectral engineering. Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
  •  
25.
  • Lukin, Daniil M., et al. (author)
  • Two-Emitter Multimode Cavity Quantum Electrodynamics in Thin-Film Silicon Carbide Photonics
  • 2023
  • In: Physical Review X. - : American Physical Society. - 2160-3308. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Color centers are point defects in crystals that can provide an optical interface to a long-lived spin state for distributed quantum information processing applications. An outstanding challenge for color center quantum technologies is the integration of optically coherent emitters into scalable thin-film photonics, a prerequisite for large-scale photonics integration of color centers within a commercial foundry process. Here, we report on the integration of near-transform-limited silicon vacancy (VSi) defects into microdisk resonators fabricated in a CMOS-compatible 4H-silicon carbide-on-insulator platform. We demonstrate a single-emitter cooperativity of up to 0.8 as well as optical superradiance from a pair of color centers coupled to the same cavity mode. We investigate the effect of multimode interference on the photon scattering dynamics from this multiemitter cavity quantum electrodynamics system. These results are crucial for the development of quantum networks in silicon carbide and bridge the classical-quantum photonics gap by uniting optically coherent spin defects with wafer-scalable, state-of-the-art photonics.
  •  
26.
  •  
27.
  •  
28.
  • Weir, Adam, et al. (author)
  • Doha agreement meeting on terminology and definitions in groin pain in athletes
  • 2015
  • In: British Journal of Sports Medicine. - : BMJ Publishing Group. - 0306-3674 .- 1473-0480. ; 49:12
  • Journal article (peer-reviewed)abstract
    • Background Heterogeneous taxonomy of groin injuries in athletes adds confusion to this complicated area. Aim The Doha agreement meeting on terminology and definitions in groin pain in athletes was convened to attempt to resolve this problem. Our aim was to agree on a standard terminology, along with accompanying definitions. Methods A one-day agreement meeting was held on 4 November 2014. Twenty-four international experts from 14 different countries participated. Systematic reviews were performed to give an up-to-date synthesis of the current evidence on major topics concerning groin pain in athletes. All members participated in a Delphi questionnaire prior to the meeting. Results Unanimous agreement was reached on the following terminology. The classification system has three major subheadings of groin pain in athletes: 1. Defined clinical entities for groin pain: Adductor-related, iliopsoas-related, inguinal-related and pubic-related groin pain. 2. Hip-related groin pain. 3. Other causes of groin pain in athletes. The definitions are included in this paper. Conclusions The Doha agreement meeting on terminology and definitions in groin pain in athletes reached a consensus on a clinically based taxonomy using three major categories. These definitions and terminology are based on history and physical examination to categorise athletes, making it simple and suitable for both clinical practice and research.
  •  
29.
  • White, Alexander D., et al. (author)
  • Static and Dynamic Stark Tuning of the Silicon Vacancy in Silicon Carbide
  • 2020
  • In: 2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO). - : IEEE. - 9781943580767
  • Conference paper (peer-reviewed)abstract
    • We present the DC Stark tuning of single Silicon Vacancies in SiC. We demonstrate static tuning across 200 GHz, exceeding the inhomogenous broadening, and dynamic tuning on timescales shorter than the optical decay rate. (C) 2020 The Author(s)
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-29 of 29
Type of publication
journal article (25)
conference paper (4)
Type of content
peer-reviewed (25)
other academic/artistic (4)
Author/Editor
Chasman, Daniel I. (8)
Campbell, H (8)
Samani, Nilesh J. (8)
Harris, Tamara B (8)
Willemsen, G (7)
Lind, Lars (7)
show more...
Hofman, A (7)
Rudan, Igor (7)
Wareham, Nicholas J. (7)
Ridker, Paul M. (7)
van Duijn, Cornelia ... (7)
Rotter, Jerome I. (7)
Gieger, Christian (7)
Luan, Jian'an (7)
Hayward, C. (7)
Zhao, Jing Hua (7)
Boomsma, DI (6)
Amin, N (6)
Salomaa, Veikko (6)
Perola, Markus (6)
Raitakari, Olli T (6)
Teumer, A (6)
Gudnason, V (6)
Uitterlinden, AG (6)
Johansson, Åsa (6)
Amin, Najaf (6)
Langenberg, Claudia (6)
Boehnke, Michael (6)
Scott, Robert A (6)
Nelson, Christopher ... (6)
Strauch, Konstantin (6)
Esko, T (6)
Wilson, JF (6)
Metspalu, A (6)
Gieger, C (6)
Metspalu, Andres (6)
Munroe, Patricia B. (6)
Schmidt, Reinhold (6)
Schmidt, Helena (6)
Deary, Ian J (6)
Kolcic, I. (6)
Polašek, O. (6)
Perola, M. (6)
Rudan, I. (6)
Wright, AF (6)
Spector, TD (6)
Huffman, Jennifer E (6)
Launer, Lenore J (6)
Liu, Yongmei (6)
Loos, Ruth J F (6)
show less...
University
Karolinska Institutet (19)
Uppsala University (13)
University of Gothenburg (5)
Stockholm University (5)
Lund University (5)
Linköping University (4)
show more...
Stockholm School of Economics (4)
Umeå University (3)
Royal Institute of Technology (1)
show less...
Language
English (29)
Research subject (UKÄ/SCB)
Medical and Health Sciences (13)
Natural sciences (12)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view