SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wang Jingjing) "

Search: WFRF:(Wang Jingjing)

  • Result 1-50 of 64
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Beal, Jacob, et al. (author)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
3.
  • Kristanl, Matej, et al. (author)
  • The Seventh Visual Object Tracking VOT2019 Challenge Results
  • 2019
  • In: 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW). - : IEEE COMPUTER SOC. - 9781728150239 ; , s. 2206-2241
  • Conference paper (peer-reviewed)abstract
    • The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative. Results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis as well as the standard VOT methodology for long-term tracking analysis. The VOT2019 challenge was composed of five challenges focusing on different tracking domains: (i) VOT-ST2019 challenge focused on short-term tracking in RGB, (ii) VOT-RT2019 challenge focused on "real-time" short-term tracking in RGB, (iii) VOT-LT2019 focused on long-term tracking namely coping with target disappearance and reappearance. Two new challenges have been introduced: (iv) VOT-RGBT2019 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2019 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019 datasets were refreshed while new datasets were introduced for VOT-RGBT2019 and VOT-RGBD2019. The VOT toolkit has been updated to support both standard short-term, long-term tracking and tracking with multi-channel imagery. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website(1).
  •  
4.
  • Kanoni, Stavroula, et al. (author)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • In: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Journal article (peer-reviewed)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
5.
  •  
6.
  • Zhang, Guojie, et al. (author)
  • Comparative genomics reveals insights into avian genome evolution and adaptation
  • 2014
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 346:6215, s. 1311-1320
  • Journal article (peer-reviewed)abstract
    • Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.
  •  
7.
  • de Vries, Paul S., et al. (author)
  • Multiancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions
  • 2019
  • In: American Journal of Epidemiology. - : Oxford University Press. - 0002-9262 .- 1476-6256. ; 188:6, s. 1033-1054
  • Journal article (peer-reviewed)abstract
    • A person's lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interactions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a multiancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. We included 45 studies in stage 1 (genome-wide discovery) and 66 studies in stage 2 (focused follow-up), for a total of 394,584 individuals from 5 ancestry groups. Analyses covered the period July 2014-November 2017. Genetic main effects and interaction effects were jointly assessed by means of a 2-degrees-of-freedom (df) test, and a 1-df test was used to assess the interaction effects alone. Variants at 495 loci were at least suggestively associated (P < 1 x 10(-6)) with lipid levels in stage 1 and were evaluated in stage 2, followed by combined analyses of stage 1 and stage 2. In the combined analysis of stages 1 and 2, a total of 147 independent loci were associated with lipid levels at P < 5 x 10(-8) using 2-df tests, of which 18 were novel. No genome-wide-significant associations were found testing the interaction effect alone. The novel loci included several genes (proprotein convertase subtilisin/kexin type 5 (PCSK5), vascular endothelial growth factor B (VEGFB), and apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1) complementation factor (A1CF)) that have a putative role in lipid metabolism on the basis of existing evidence from cellular and experimental models.
  •  
8.
  • Kristan, Matej, et al. (author)
  • The Visual Object Tracking VOT2016 Challenge Results
  • 2016
  • In: COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II. - Cham : SPRINGER INT PUBLISHING AG. - 9783319488813 - 9783319488806 ; , s. 777-823
  • Conference paper (peer-reviewed)abstract
    • The Visual Object Tracking challenge VOT2016 aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 70 trackers are presented, with a large number of trackers being published at major computer vision conferences and journals in the recent years. The number of tested state-of-the-art trackers makes the VOT 2016 the largest and most challenging benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the Appendix. The VOT2016 goes beyond its predecessors by (i) introducing a new semi-automatic ground truth bounding box annotation methodology and (ii) extending the evaluation system with the no-reset experiment.
  •  
9.
  • Maimaiti, Nazhakaiti, et al. (author)
  • Cervical musculoskeletal disorders and their relationships with personal and work-related factors among electronic assembly workers
  • 2019
  • In: Journal of Safety Research. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0022-4375 .- 1879-1247. ; 71, s. 79-85
  • Journal article (peer-reviewed)abstract
    • Introduction: Electronics assembly workers are reported to have a high prevalence of musculoskeletal disorders (MSDs). This study investigated the prevalence of cervical MSDs and the complex relationships between cervical MSDs and individual, physical, psychosocial factors among electronics assembly workers. Methods: In this cross-sectional survey, self-administered questionnaires from 700 workers in electronics manufacturing workshops were analysed. Information concerning musculoskeletal symptoms, personal and work-related factors was collected. Finally, the prevalence of cervical MSDs was computed for different subgroups, and the relationships with different factors were analyzed using logistic regression and structural equation modeling (SEM). Results: The total 12 month prevalence of cervical MSDs among the survey population was 29.4%. Variables of gender, job tenure, twisting head frequently, neck flexion/extension for long time and work required to be done quickly showed significant associations with MSDs in a multivariate logistic regression (P < 0.05). The SEM analysis showed moderate and significant correlations between postural load (gamma = 0.279), gender (gamma = 0.233) and cervical MSDs, while there were weak but significant correlations between vibration (gamma = 0.024), work stress (gamma = 0.126), job tenure (gamma = 0.024) and cervical MSDs. Both work stress and vibration affected the MSDs indirectly through postural load. Conclusions: The logistic regression results support previous general epidemiological MSD studies, and indicates that individual, physical, and psychosocial factors are related to cervical MSDs. The SEM provides a better approximation of the complexity of the relationship between risk factors and cervical MSDs. Improving awkward postures may be effective ways to control the influence of occupational stressors or vibration on MSDs. Practical Applications: The study is to improve prevention of MSDs among electronics assembly workers and promote their occupational health.
  •  
10.
  • Dong, Yidan, et al. (author)
  • Study on the Associations of Individual and Work-Related Factors with Low Back Pain among Manufacturing Workers Based on Logistic Regression and Structural Equation Model
  • 2021
  • In: International Journal of Environmental Research and Public Health. - : MDPI. - 1661-7827 .- 1660-4601. ; 18:4
  • Journal article (peer-reviewed)abstract
    • Work-related musculoskeletal injuries are one of the major occupational health issues of the workers, especially low back pain (LBP). The aim of this study was to survey the prevalence of LBP among manufacturing workers and to identify associations of individual and work-related factors with LBP. A cross-sectional questionnaire study was performed with 1173 participating manufacturing workers. The questionnaire included individual factors, psychosocial and physical exposures, and musculoskeletal discomfort. It was analyzed by logistic regression and structural equation modeling (SEM). The 1-year prevalence of LBP among Chinese manufacturing workers was 33.6%. Logistic regression analysis showed that job tenure, awkward postures, vibration and job demand were positively-while social support and job control were negatively associated with LBP (p < 0.05). The SEM results indicated that, as shown in other studies, job types, job tenure, postural load, high job demand, low job control and vibration were directly associated with LBP, but also that job types, high job demand, low social support and vibration may have indirect effects on LBP-mediated by postural load.
  •  
11.
  • Xu, Lei, et al. (author)
  • The Role of Solution Aggregation Property toward High-Efficiency Non-Fullerene Organic Photovoltaic Cells
  • 2024
  • In: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095.
  • Journal article (peer-reviewed)abstract
    • In organic photovoltaic cells, the solution-aggregation effect (SAE) is long considered a critical factor in achieving high power-conversion efficiencies for polymer donor (PD)/non-fullerene acceptor (NFA) blend systems. However, the underlying mechanism has yet to be fully understood. Herein, based on an extensive study of blends consisting of the representative 2D-benzodithiophene-based PDs and acceptor-donor-acceptor-type NFAs, it is demonstrated that SAE shows a strong correlation with the aggregation kinetics during solidification, and the aggregation competition between PD and NFA determines the phase separation of blend film and thus the photovoltaic performance. PDs with strong SAEs enable earlier aggregation evolutions than NFAs, resulting in well-known polymer-templated fibrillar network structures and superior PCEs. With the weakening of PDs' aggregation effects, NFAs, showing stronger tendencies to aggregate, tend to form oversized domains, leading to significantly reduced external quantum efficiencies and fill factors. These trends reveal the importance of matching SAE between PD and NFA. The aggregation abilities of various materials are further evaluated and the aggregation ability/photovoltaic parameter diagrams of 64 PD/NFA combinations are provided. This work proposes a guiding criteria and facile approach to match efficient PD/NFA systems. A systematic study of the representative organic photovoltaic systems shows that the aggregation competition between polymer donor (PD) and non-fullerene acceptor (NFA) is a decisive factor in the phase separation of blend film and thus the photovoltaic performance. Based on 64 PD/NFA combinations, the aggregation ability/photovoltaic parameter heatmaps are plotted, providing a new matching rule for developing high-efficiency PD/NFA systems. image
  •  
12.
  • de las Fuentes, Lisa, et al. (author)
  • Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci
  • 2021
  • In: Molecular Psychiatry. - : Springer Nature. - 1359-4184 .- 1476-5578. ; 26:6, s. 2111-2125
  • Journal article (peer-reviewed)abstract
    • Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, “Some College” (yes/no) and “Graduated College” (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 × 10-8). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.
  •  
13.
  • Li, Jingjing, et al. (author)
  • Photothermal Aerogel Beads Based on Polysaccharides: Controlled Fabrication and Hybrid Applications in Solar-Powered Interfacial Evaporation, Water Remediation, and Soil Enrichment
  • 2022
  • In: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 14:44, s. 50266-50279
  • Journal article (peer-reviewed)abstract
    • Solar-powered interfacial evaporation has emerged as an innovative and sustainable technology for clean water production. However, the rapid, mass and shape-controlled fabrication of three-dimensional (3D) steam generators (SGs) for versatile hybrid applications remains challenging. Herein, composite aerogel beads with self-contained properties (i.e., hydrophilic, porous, photothermal, and durable) are developed and demonstrated for threefold hybrid applications including efficient solar-powered interfacial evaporation, water remediation, and controlled soil enrichment. The rational incorporation of selected polysaccharides enables us to fabricate bead-like aerogels with rapid gelation, continuous processing, and enhanced ion adsorption. The composite beads can attain a high water evaporation rate of 1.62 kg m-2 h-1 under 1 sun. Meanwhile, high phosphate adsorption capacity of over 120 mg g-1 is achieved in broad pH (2.5-12.4) and concentration (200-1000 mg L-1) ranges of phosphate solutions. Gratifyingly, we demonstrate the first example of recycling biomaterials from interfacial SGs for controlled nutrient release, soil enrichment, and sustainable agriculture. The phosphate-saturated beads can be gradually broken down in the soil. Macronutrients (N, P, and K) can be slowly released in 50 days, sustaining the plant germination and growth in a whole growth stage. This work shines light on the mass and controlled fabrication of aerogel beads based on double-network biopolymers, not merely scaling up solar-powered interfacial evaporation but also considering water remediation, waste material disposal, and value-added conversion.
  •  
14.
  • Liu, Junwei, et al. (author)
  • Polymer synergy for efficient hole transport in solar cells and photodetectors
  • 2023
  • In: Energy & Environmental Science. - : ROYAL SOC CHEMISTRY. - 1754-5692 .- 1754-5706.
  • Journal article (peer-reviewed)abstract
    • Hole transport materials (HTMs) have greatly advanced the progress of solution-based electronic devices in the past few years. Nevertheless, most devices employing dopant-free organic HTMs can only deliver inferior performance. In this work, we introduced a novel "polymer synergy" strategy to develop versatile dopant-free polymer HTMs for quantum dot/perovskite solar cells and photodetectors. With this synergy strategy, the optical, electrical and aggregation properties of polymer HTMs can be modulated, resulting in complementary absorption, high hole mobility, favorable energy landscape and moderate aggregation. Moreover, a clear orientational transition was observed for the developed HTMs with a 9-fold increase in the face-on/edge-on ratio, providing a highway-like carrier transport for electronic devices, as revealed by in situ characterization and ultrafast transient absorption. With these benefits, the photovoltaic and photodetection performance of quantum dot devices were boosted from 11.8% to 13.5% and from 2.95 x 10(12) to 3.41 x 10(13) Jones (over a 10-fold increase), respectively. Furthermore, the developed polymer HTMs can also significantly enhance the photovoltaic and photodetection performance of perovskite devices from 15.1% to 22.7% and from 2.7 x 10(12) to 2.17 x 10(13)Jones with the same device structure, indicating their great application potential in the emerging optoelectronics.
  •  
15.
  • Ren, Luyao, et al. (author)
  • Quartet DNA reference materials and datasets for comprehensively evaluating germline variant calling performance
  • 2023
  • In: Genome Biology. - : BioMed Central (BMC). - 1465-6906 .- 1474-760X. ; 24:1
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Genomic DNA reference materials are widely recognized as essential for ensuring data quality in omics research. However, relying solely on reference datasets to evaluate the accuracy of variant calling results is incomplete, as they are limited to benchmark regions. Therefore, it is important to develop DNA reference materials that enable the assessment of variant detection performance across the entire genome.RESULTS: We established a DNA reference material suite from four immortalized cell lines derived from a family of parents and monozygotic twins. Comprehensive reference datasets of 4.2 million small variants and 15,000 structural variants were integrated and certified for evaluating the reliability of germline variant calls inside the benchmark regions. Importantly, the genetic built-in-truth of the Quartet family design enables estimation of the precision of variant calls outside the benchmark regions. Using the Quartet reference materials along with study samples, batch effects are objectively monitored and alleviated by training a machine learning model with the Quartet reference datasets to remove potential artifact calls. Moreover, the matched RNA and protein reference materials and datasets from the Quartet project enables cross-omics validation of variant calls from multiomics data.CONCLUSIONS: The Quartet DNA reference materials and reference datasets provide a unique resource for objectively assessing the quality of germline variant calls throughout the whole-genome regions and improving the reliability of large-scale genomic profiling.
  •  
16.
  • Wang, Fei, et al. (author)
  • Combined effects of cyclic load and temperature fluctuation on the mechanical behavior of porous sandstones
  • 2020
  • In: Engineering Geology. - : Elsevier. - 0013-7952 .- 1872-6917. ; 266
  • Journal article (peer-reviewed)abstract
    • Rocks in cold regions tend to experience exacerbated degradation under the combined effects of environmental and anthropogenic factors, which may arise from, for example, temperature fluctuation, mechanical excavation, and blasting. Activities related to rock support or open-pit slope optimization in cold regions require a complete understanding of the failure mechanisms of rock under the complex conditions. This paper quantitatively documents the impact of combined cyclic mechanical load and freeze-thaw cycles (i.e., the effect of stress “history”) on the microstructural evolution and mechanical degradation of three porous sandstones with distinct porosity values (from 3.9 to 14.1%). The three sandstone samples were collected from different geological regions in China. The microstructural evolution of the tested samples was quantitatively analyzed using the low-field Nuclear Magnetic Resonance (NMR) technique. To investigate sample degradation arising from the impact of the stress “history”, the cyclic-loaded and freeze-thaw cycled samples were eventually compressed to failure, during which an acoustic emission system was used to monitor microseismic activities. The results of the study show that the porosity of all tested sandstone samples was increased after cyclic load, with a much more rapid and further increase in porosity observed for samples being subsequently treated under the freeze-thaw cycles. More interestingly, the Chuxiong sandstone with relatively small porosity values were much more sensitive to the impact of cyclic load compared with the Linyi sandstone, exhibiting a somewhat larger increase rate in porosity. However, the Linyi sandstone with larger initial porosity values exhibited a relatively large increase rate in porosity under the multiple freeze-thaw treatments. The multiple freeze-thaw treatments mainly resulted in the development of relatively large pores. The results of the uniaxial compression tests show that the strength reduction of the samples being solely treated by freeze-thaw cycles was within the range of 5–10%, whereas it was within the range of 20–40% for those samples subjected to the combined cyclic load and freeze-thaw cycles.
  •  
17.
  • Wang, Pan, et al. (author)
  • Genome-wide study identifies the regulatory glycosyltransferase genes networks and signaling pathways from Keshan disease
  • 2014
  • In: Journal of Health Science. - : David Publishing Company. ; 2:4, s. 165-173
  • Journal article (peer-reviewed)abstract
    • KD (Keshan disease) is an endemic cardiomyopathy occurring only in China. Its pathogenesis is unclear till now. In the study, gene expression profiles of the PBMC (peripheral blood mononuclear cell) derived respectively from KD patients and healthy in KD areas were compared. Total RNA was isolated, amplified, labeled and hybridized to Agilent 4 × 44 K Whole Human Genome Oligonucleotide Microarray. Significant canonical pathways were analyzed by IPA (ingenuity pathway analysis) to identify differently expressed genes and pathways involved in the cardiovascular system development and function. Quantitative RT-PCR was applied tofurther validate our microarray results. Eighty-three up-regulated (ratios ≥ 2.0) and nine down-regulated glycosyltransferase genes (ratios ≤ 0.5) in PBMC in KD patients were detected by significance analysis of microarrays. Two significant canonical pathways from glycosyltransferase gene expression profiles were screened by IPA. The results of qRT-PCR show that four up-regulated (BMP1/7/10 and FGF18) and one down-regulated (BMP2) genes are consistent with those in microarray experiment, confirming the validity of the microarray data. Based on the results of the study, it is suggested that bone morphogenetic proteins and fibroblast growth factors might play an important role in the pathogenesis of KD. This further helps us to understand the pathogenesis of KD, as well as dilated cardiomyopathy
  •  
18.
  • Wang, Xi, et al. (author)
  • Gene expression signature in endemic osteoarthritis by microarray analysis
  • 2015
  • In: International Journal of Molecular Sciences. - Basel, Switzerland : MDPI. - 1661-6596 .- 1422-0067. ; 16:5, s. 11465-11481
  • Journal article (peer-reviewed)abstract
    • Kashin-Beck Disease (KBD) is an endemic osteochondropathy with an unknown pathogenesis. Diagnosis of KBD is effective only in advanced cases, which eliminates the possibility of early treatment and leads to an inevitable exacerbation of symptoms. Therefore, we aim to identify an accurate blood-based gene signature for the detection of KBD. Previously published gene expression profile data on cartilage and peripheral blood mononuclear cells (PBMCs) from adults with KBD were compared to select potential target genes. Microarray analysis was conducted to evaluate the expression of the target genes in a cohort of 100 KBD patients and 100 healthy controls. A gene expression signature was identified using a training set, which was subsequently validated using an independent test set with a minimum redundancy maximum relevance (mRMR) algorithm and support vector machine (SVM) algorithm. Fifty unique genes were differentially expressed between KBD patients and healthy controls. A 20-gene signature was identified that distinguished between KBD patients and controls with 90% accuracy, 85% sensitivity, and 95% specificity. This study identified a 20-gene signature that accurately distinguishes between patients with KBD and controls using peripheral blood samples. These results promote the further development of blood-based genetic biomarkers for detection of KBD.
  •  
19.
  • Zhang, Yifei, et al. (author)
  • Superionic Conductivity in Ceria-Based Heterostructure Composites for Low-Temperature Solid Oxide Fuel Cells
  • 2020
  • In: Nano-Micro Letters. - : Springer Science and Business Media LLC. - 2150-5551 .- 2311-6706. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Ceria-based heterostructure composite (CHC) has become a new stream to develop advanced low-temperature (300–600 °C) solid oxide fuel cells (LTSOFCs) with excellent power outputs at 1000 mW cm−2 level. The state-of-the-art ceria–carbonate or ceria–semiconductor heterostructure composites have made the CHC systems significantly contribute to both fundamental and applied science researches of LTSOFCs; however, a deep scientific understanding to achieve excellent fuel cell performance and high superionic conduction is still missing, which may hinder its wide application and commercialization. This review aims to establish a new fundamental strategy for superionic conduction of the CHC materials and relevant LTSOFCs. This involves energy band and built-in-field assisting superionic conduction, highlighting coupling effect among the ionic transfer, band structure and alignment impact. Furthermore, theories of ceria–carbonate, e.g., space charge and multi-ion conduction, as well as new scientific understanding are discussed and presented for functional CHC materials.
  •  
20.
  • Zhou, Xuming, et al. (author)
  • Research on Theory and Technology of Floor Heave Control in Semicoal Rock Roadway: Taking Longhu Coal Mine in Qitaihe Mining Area as an Example
  • 2022
  • In: Lithosphere. - : GeoScienceWorld. - 1941-8264 .- 1947-4253. ; 2022:Special 11
  • Journal article (peer-reviewed)abstract
    • As one of the most common disasters in deep mine roadway, floor heave has caused serious obstacles to mine transportation and normal production activities. The third section winch roadway in the third mining area of Qitaihe Longhu coal mine has a serious floor heave due to the large buried depths of the roadway and the semicoal rock roadway, and the maximum floor heave is 750 mm. For the problem of floor stability, this paper establishes a mechanical model to analyze the stability of roadway floor heave by analogy with the basement heave of deep foundation pit. It provides a model reference for analyzing the problem of roadway floor heave. Aiming at the problem of roadway floor heave in Longhu coal mine, the roadway model is established by using FLAC3D, and the roadway model after support is established according to the on-site support measures. Through the analysis of the distribution of roadway plastic area, stress nephogram, and displacement field simulation results, the results show that the maximum displacement of roadway roof and floor after support is reduced by 15% and 23%, but the maximum floor heave is still 770 mm, which is close to the measured floor heave of roadway. In order to solve the problem of roadway floor heave and integrate economic factors, this paper puts forward three support optimization schemes, simulates the support effect of each scheme, and finally determines that scheme 3 is the best support optimization scheme. Compared with that under the original support, the amount of floor heave is reduced by 81%, and the final amount of floor heave is 150 mm, which can meet the requirements of roadway floor deformation. The results provide a scheme and guidance for roadway support optimization
  •  
21.
  • An, Sining, 1991, et al. (author)
  • A 40 Gbps DQPSK Modem for Millimeter-wave Communications
  • 2016
  • In: Asia-Pacific Microwave Conference Proceedings APMC 2015. ; 1
  • Conference paper (peer-reviewed)abstract
    • A high speed differential quadrature phase shift keying (DQPSK) modulator and demodulator (modem) is presented for data rates up to 40 Gbps, in which the modulator is based on an FPGA and the demodulator is based on analog components. The modem performance has been verified in a lab environment. The targeted application is wireless communications using millimeter-wave bands as a flexible alternative to optical fiber links in next generation mobile networks.
  •  
22.
  • Cao, Ri-hong, et al. (author)
  • Failure and Mechanical Behavior of Transversely Isotropic Rock under Compression-Shear Tests : Laboratory Testing and Numerical Simulation
  • 2021
  • In: Engineering Fracture Mechanics. - : Elsevier. - 0013-7944 .- 1873-7315. ; 241
  • Journal article (peer-reviewed)abstract
    • The failure and mechanical behavior of transversely isotropic rock are significantly affected by the original bedding planes. Until now, few studies have been performed to investigate the influence of the geometrical and mechanical parameters of the bedding planes on the fracture characteristics of transversely isotropic rocks under planar shear fracture loading conditions. For this purpose, experimental and numerical compression-shear tests on double-notched specimens are conducted to investigate the fracturing characteristics of transversely isotropic rock under planar shear fracture loading. The experimental study that focuses on the influence of bedding plane inclination on fracture load, fracture pattern and AE evolution, and six inclination angles is conducted in this study. Based on the flat joint contact model (for the rock matrix) and smooth joint contact model (for the original bedding plane) in PFC2D (particle flow code), the microscale fracturing process of transversely isotropic rock with different inclinations is simulated and analyzed. The results show that the inclination has an important influence on the fracture load and fracture pattern, and the maximum and minimum fracture loads are obtained for specimens with inclination angles of 30° and 60°, respectively. Moreover, the strength and spacing of the original bedding planes also play an important role in fracture loads. Higher bedding plane strength and wider bedding plane spacing result in higher fracture loads. In addition, with a moderate inclination angle, transversely isotropic rock with higher bedding plane strength tends to form cracks that cut through the rock matrix. However, with the decrease in the bedding plane strength, more fractures form along the bedding planes.
  •  
23.
  • Chen, Jingjing, et al. (author)
  • A high efficient heat exchanger with twisted geometries for biogas process with manure slurry
  • 2020
  • In: Applied Energy. - : Elsevier. - 0306-2619 .- 1872-9118. ; 279
  • Journal article (peer-reviewed)abstract
    • Heat-transfer enhancement in manure slurry is crucial for increasing the efficiency and production of biogas during anaerobic digestion in biogas plants. In this study, a novel heat exchanger with an optimal twisted geometry was developed based on the numerical screening of the twisted tubes with equilateral polygons, and experiments were conducted to validate the numerical results. It was observed that the SST k-ω model is more efficient than other turbulence models in representing the heat transfer performance of the twisted tubes, and the numerical model with a thermostatic wall can be used to reliably screen the twisted geometries. The twisted hexagonal tube has the optimal geometry, with enhancement capability of up to 1.4 times compared to that of the circular tube. The formation of high continuity regions with relatively strong heat-transfer rates along the heat-exchange wall is the main reason for the high performance during heat transfer. The external heating process was integrated in a full-scale biogas plant, and the model and algorithm were developed and validated with additional experiments to describe the overall performance of both conventional and screened optimal geometries under different conditions. It was observed that a profit equivalent to 39% of total production for a large-scale biogas plant can be achieved owing to energy conservation in external heating with the twisted hexagonal tubes.
  •  
24.
  • Chen, Jingjing, et al. (author)
  • Designing heat exchanger for enhancing heat transfer of slurries in biogas plants
  • 2019
  • In: Innovative Solutions for Energy Transitions. - : Elsevier. ; , s. 1288-1293
  • Conference paper (peer-reviewed)abstract
    • Heat transfer geometries with enhanced performance for the slurries with high viscosity can improve the net raw biogas production in bio-methane process. In this study, the rheological properties of different slurries were tested, correlated and implemented to computational fluid dynamics (CFD). CFD was then used to screen a new geometry based on the twisted tube combined with mechanism study, and experimental testing was conducted for verification. It shows that the twisted hexagonal tube (THT) has the highest performance. The mechanism for enhancing the heat transfer with THT was mainly due to the effective shear rate. Furthermore, the waste-heat recovery with the THT heat exchanger in biogas production was estimated quantitatively and compared with the normal heat exchanger and scraped-surface heat exchanger (SSHE). Compared to the normal heat exchanger, for THT, the increase of net raw biogas production δNRBP can be up to 17%, while it is only up to 8.53% for SSHE. Besides, the external heating up processes with THT and normal heat exchanger were studied to estimate the heating time for different temperature fluctuations and power requirements of boiler. It is found that the process with THT can save 25-38% heating time for the anaerobic reactor compared to the normal heat exchanger. Therefore, designed THT heat exchanger is promising, and the developed methods can also be beneficial for studying other heat transfer processes.
  •  
25.
  • Chen, Jingjing, et al. (author)
  • Heat-transfer enhancement for corn straw slurry from biogas plants by twisted hexagonal tubes
  • 2020
  • In: Applied Energy. - : Elsevier. - 0306-2619 .- 1872-9118. ; 262
  • Journal article (peer-reviewed)abstract
    • Heat-transfer geometries that enhance heat transfer performance for slurries increase the net raw biogas production in the bio-methane process. In this study, the precise temperature-dependent rheologies of corn straw slurry with 6 and 8% total solid were determined, collected, and modeled to conduct a numerical simulation via CFD, the first instance of such research. Subsequently, the reliability of the numerical results was verified with heat-transfer experiments. The heat-transfer performances of the circular, twisted square and twisted hexagonal tubes were estimated numerically, ultimately showing that the twisted hexagonal tube performed optimally with an enhancement factor of up to 2.0 in the turbulent region, compared to the circular tube. Based on the numerical results, the mechanism of heat-transfer enhancement was revealed, showing balanced radial mixing and the near-wall shear effect that leads to a strong and continuous shear rate under a considerable radial-flow intensity. An engineering equation was obtained for the performance evaluation, and the waste-heat recovery from corn straw slurry was analyzed, showing the twisted hexagonal tube can increase the net raw biogas production by up to 17.0% compared to the circular tube.
  •  
26.
  • Chen, Jingjing, et al. (author)
  • Heat-transfer performance of twisted tubes for highly viscous food waste slurry from biogas plants
  • 2022
  • In: Biotechnology for Biofuels and Bioproducts. - : Springer Nature. - 2731-3654. ; 15
  • Journal article (peer-reviewed)abstract
    • Background: The use of food waste as feedstock shows high production of biogas via anaerobic digestion, but requires efficient heat transfer in food waste slurry at heating and cooling processes. The lack of rheological properties hampered the research on the heat-transfer process for food waste slurry. Referentially, the twisted hexagonal and elliptical rubes have been proved as the optimal enhanced geometry for heat transfer of medium viscous slurries with non-Newtonian behavior and Newtonian fluids, respectively. It remains unknown whether improvements can be achieved by using twisted geometries in combination with food waste slurry in processes including heating and cooling.Results: Food waste slurry was observed to exhibit highly viscous, significant temperature-dependence, and strongly shear-thinning rheological characteristics. Experiments confirmed the heat-transfer enhancement of twisted hexagonal tubes for food waste slurry and validated the computational fluid dynamics-based simulations with an average deviation of 14.2%. Twisted hexagonal tubes were observed to be more effective at low-temperature differences and possess an enhancement factor of up to 2.75; while twisted elliptical tubes only exhibited limited heat-transfer enhancement at high Reynolds numbers. The heat-transfer enhancement achieved by twisted hexagonal tubes was attributed to the low dynamic viscosity in the boundary layer induced by the strong and continuous shear effect near the walls of the tube.Conclusions: This study determined the rheological properties of food waste slurry, confirmed the heat-transfer enhancement of the twisted hexagonal tubes experimentally and numerically, and revealed the mechanism of heat-transfer enhancement based on shear rate distributions.
  •  
27.
  • Chen, Jingjing, et al. (author)
  • Mechanism of waste-heat recovery from slurry by scraped-surface heat exchanger
  • 2017
  • In: Applied Energy. - : Elsevier. - 0306-2619 .- 1872-9118. ; 207, s. 146-155
  • Journal article (peer-reviewed)abstract
    • Waste-heat recovery from discharged slurries can improve the net raw biogas production in the bio-methane process in order to meet the demand for a next-generation of anaerobic digestion. In this study, a numerical model of a scraped-surface heat exchanger was proposed with the consideration of the complete and precise rheological behaviour of the slurry of animal manure for the first time for achieving highly efficient waste-heat recovery. The rheological model results were verified with new experimental data measured in this work. Subsequently, the convective heat-transfer coefficient of the scraped-surface heat exchanger was calculated numerically with the proposed numerical model, and the performance was determined. Then, the contributions of waste-heat recovery from the slurry to the biogas production using a general shell-and-tube heat exchanger and the scraped-surface heat exchanger were calculated quantitatively and compared. For the case of scraped-surface heat exchanger, the increase of net raw biogas production can be up to 8.53%, which indicates that there is a great potential to increase the net raw biogas production in the bio-methane process using a scraped-surface heat exchanger with low-cost equipment and a compactible structure.
  •  
28.
  • Chen, Jingjing, et al. (author)
  • Mechanism Study of Heat Transfer Enhancement Using Twisted Hexagonal Tube with Slurry from Biogas Plant
  • 2017
  • In: Energy Procedia. - : Elsevier. - 1876-6102. ; 142, s. 880-885
  • Journal article (peer-reviewed)abstract
    • Waste-heat recovery from discharged slurries is important to improve the biogas production efficiency but still remains challenge duo to the special properties of slurries in anaerobic digestion process. In this work, numerical study was carried out to investigate the flow field, and heat transfer performance of slurry from biogas plant in the twisted hexagonal and other twisted tubes was simulated with computer fluid dynamic (CFD) for the first time. The numerical method was validated with experimental data from the literature. The heat transfer performance and flow resistance of twisted hexagon tube were calculated and compared with other types of twisted tubes. The enhancement factor of the twisted hexagonal tube reached to 2 and kept optimum at turbulence flow region compared to the twisted tubes with square and elliptical cross section. Meanwhile, the mechanism of heat transfer enhancement with different twisted tubes was further studied, and the optimal field synergy and minimum local circulation flow near the wall are the main reasons for the high performance and low flow resistance of the twisted hexagonal tube.
  •  
29.
  • Chen, Jingjing, et al. (author)
  • Mechanism Study of Waste Heat Recovery from Slurry by Surface Scraped Heat Exchanger
  • 2017
  • In: Energy Procedia. - : Elsevier. - 1876-6102. ; 105, s. 1109-1115
  • Journal article (peer-reviewed)abstract
    • Waste-heat recovery from discharged slurries can improve the net raw biogas production in bio-methane process in order to meet the demand of a new generation of anaerobic digestion. In order to achieve a high efficient waste-heat recovery, in this work, a mathematical model of waste-heat recovery process with surface scraped heat exchanger (SSHE) was proposed with the consideration of the shear rate and temperature-dependent rheological behaviour. The convective heat transfer performance of SSHE was calculated numerically where slurry was considered. The contribution of waste heat recovery from the slurry to biogas production by SSHE and general shell-and-tube heat exchanger (STHE) were firstly calculated quantitatively, and the increase of net raw biogas production could be over 13.5% by SSHE with need of heat exchange area less than a quarter of STHE's, which showed a great potential to increase the net raw biogas production in bio-methane process with low equipment investments and more compactible structure.
  •  
30.
  • Chen, Jingjing, et al. (author)
  • Slippage on Porous Spherical Superhydrophobic Surface Revolutionizes Heat Transfer of Non-Newtonian Fluid
  • 2022
  • In: Advanced Materials Interfaces. - : John Wiley & Sons. - 2196-7350. ; 9:34
  • Journal article (peer-reviewed)abstract
    • In this study, a new strategy to achieve high-efficient heat transfer for non-Newtonian fluids with slippage using a stably prepared superhydrophobic coating is presented. A superhydrophobic coating is prepared on the inner surface of a sleeve at specific shear stress. The slippage and heat-transfer processes of the typical non-Newtonian fluid–1% carboxymethyl cellulose solutions on the superhydrophobic coating are investigated simultaneously. A novel porous spherical type of superhydrophobic coating with a contact angle of 168° is obtained. It is found that the shear stress in electrodeposition is a key parameter to control the morphology and wetting ability of the superhydrophobic coating. The slip length and enhancement factor of heat transfer for the non-Newtonian fluid on the coating are found in a range of 20–900 µm and 1.47 experimentally. A new parameter is proposed as Reynolds number Re divided by the dimensionless slip length ls* (Re/ls*) for the heat-transfer enhancement with slippage, which can be used as the guide for designing coating and selecting the operating conditions. The Re/ls* is <4, which can enhance the heat transfer via the slippage.
  •  
31.
  • Chen, Kuan, et al. (author)
  • Characterization and protein engineering of glycosyltransferases for the biosynthesis of diverse hepatoprotective cycloartane-type saponins in Astragalus membranaceus
  • 2023
  • In: Plant Biotechnology Journal. - : John Wiley & Sons. - 1467-7644 .- 1467-7652. ; 21:4, s. 698-710
  • Journal article (peer-reviewed)abstract
    • Although plant secondary metabolites are important source of new drugs, obtaining these compounds is challenging due to their high structural diversity and low abundance. The roots of Astragalus membranaceus are a popular herbal medicine worldwide. It contains a series of cycloartane-type saponins (astragalosides) as hepatoprotective and antivirus components. However, astragalosides exhibit complex sugar substitution patterns which hindered their purification and bioactivity investigation. In this work, glycosyltransferases (GT) from A. membranaceus were studied to synthesize structurally diverse astragalosides. Three new GTs, AmGT1/5 and AmGT9, were characterized as 3-O-glycosyltransferase and 25-O-glycosyltransferase of cycloastragenol respectively. AmGT1(G146V/I) variants were obtained as specific 3-O-xylosyltransferases by sequence alignment, molecular modelling and site-directed mutagenesis. A combinatorial synthesis system was established using AmGT1/5/9, AmGT1(G146V/S) and the reported AmGT8 and AmGT8(A394F). The system allowed the synthesis of 13 astragalosides in Astragalus root with conversion rates from 22.6% to 98.7%, covering most of the sugar-substitution patterns for astragalosides. In addition, AmGT1 exhibited remarkable sugar donor promiscuity to use 10 different donors, and was used to synthesize three novel astragalosides and ginsenosides. Glycosylation remarkably improved the hepatoprotective and SARS-CoV-2 inhibition activities for triterpenoids. This is one of the first attempts to produce a series of herbal constituents via combinatorial synthesis. The results provided new biocatalytic tools for saponin biosynthesis.
  •  
32.
  • Cheng, Li, et al. (author)
  • Safety and Protection Measures of Underground Non-Coal Mines with Mining Depth over 800 m: A Case Study in Shandong, China
  • 2022
  • In: Sustainability. - : MDPI. - 2071-1050. ; 14:20
  • Journal article (peer-reviewed)abstract
    • With the increase in mining depth, the risk of ground pressure disasters in yellow gold mines is becoming more and more serious. This paper carries out a borehole test for the pressure behavior in a non-coal mining area with a mining depth of more than 800 m in the Jiaodong area. The test results show that under a depth of 1050 m, the increase in the vertical principal stress is the same as the increase in the minimum horizontal principal stress, which is about 3 MPa per 100 m. When the depth increases to 1350 m, the vertical principal stress increases by about 3% per 100 m, and the self-weight stress and the maximum horizontal principal stress maintain a steady growth rate of about 3 MPa per 100 m. In addition, based on the test results, the operation of the ground pressure monitoring system in each mine is investigated. The investigation results show that in some of the roadway and stope mines with depths of more than 800 m, varying degrees of rock mass instability have occurred, and a few mines have had sporadic slight rockbursts, accounting for about 5%. There was a stress concentration area in the lower part of the goaf formed in the early stage of mining, and slight rockburst phenomena such as rock mass ejection have occurred; meanwhile, the area stability for normal production and construction was good, and there was no obvious ground pressure. This paper compares the researched mines horizontally as well as to international high-level mines and puts forward some suggestions, including: carrying out ground pressure investigations and improving the level of intelligence, which would provide countermeasures to balance the safety risks of deep mining, reducing all kinds of safety production accidents and providing a solid basis for risk prevention and supervision.
  •  
33.
  • Deng, Tingzhi, et al. (author)
  • Hippocampal Transcriptome-Wide Association Study Reveals Correlations Between Impaired Glutamatergic Synapse Pathway and Age-Related Hearing Loss in BXD-Recombinant Inbred Mice
  • 2021
  • In: Frontiers in Neuroscience. - : Frontiers Media S.A.. - 1662-4548 .- 1662-453X. ; 15
  • Journal article (peer-reviewed)abstract
    • Age-related hearing loss (ARHL) is associated with cognitive dysfunction; however, the detailed underlying mechanisms remain unclear. The aim of this study is to investigate the potential underlying mechanism with a system genetics approach. A transcriptome-wide association study was performed on aged (12-32 months old) BXD mice strains. The hippocampus gene expression was obtained from 56 BXD strains, and the hearing acuity was assessed from 54 BXD strains. Further correlation analysis identified a total of 1,435 hearing-related genes in the hippocampus (p < 0.05). Pathway analysis of these genes indicated that the impaired glutamatergic synapse pathway is involved in ARHL (p = 0.0038). Further gene co-expression analysis showed that the expression level of glutamine synthetase (Gls), which is significantly correlated with ARHL (n = 26, r = -0.46, p = 0.0193), is a crucial regulator in glutamatergic synapse pathway and associated with learning and memory behavior. In this study, we present the first systematic evaluation of hippocampus gene expression pattern associated with ARHL, learning, and memory behavior. Our results provide novel potential molecular mechanisms involved in ARHL and cognitive dysfunction association.
  •  
34.
  • Du, Y., et al. (author)
  • Clustering heat users based on consumption data
  • 2019
  • In: Energy Procedia. - : Elsevier Ltd. - 1876-6102. ; , s. 3196-3201
  • Conference paper (peer-reviewed)abstract
    • In today's district heating (DH) energy market, it is common to use user functional categories in price models to determine the heat price. However, users in the same category do not necessarily have the same energy consumption patterns, which potentially leads to unfair prices and many other practical issues. Taking into account heat usage characteristics, this work proposes two data-driven methods to cluster DH users to identify similar usage patterns, using practical energy consumption data. Efforts are focused on extracting representative features of users from their daily usage profiles and duration curves, respectively. Employing clustering based on these features, the resulting typical usage patterns and user category distributions are discussed. Our results can serve as potential inputs for future energy price models, demand-side management, and load reshaping strategies.
  •  
35.
  • Gao, Hongkai, et al. (author)
  • Permafrost Hydrology of the Qinghai-Tibet Plateau : A Review of Processes and Modeling
  • 2021
  • In: Frontiers in Earth Science. - : Frontiers Media SA. - 2296-6463. ; 8
  • Research review (peer-reviewed)abstract
    • Permafrost extends 40% of the Qinghai-Tibet Plateau (QTP), a region which contains the headwaters of numerous major rivers in Asia. As an aquiclude, permafrost substantially controls surface runoff and its hydraulic connection with groundwater. The freeze–thaw cycle in the active layer significantly impacts soil water movement direction, velocity, storage capacity, and hydraulic conductivity. Under the accelerating warming on the QTP, permafrost degradation is drastically altering regional and even continental hydrological regimes, attracting the attention of hydrologists, climatologists, ecologists, engineers, and decision-makers. A systematic review of permafrost hydrological processes and modeling on the QTP is still lacking, however, leaving a number of knowledge gaps. In this review, we summarize the current understanding of permafrost hydrological processes and applications of some permafrost hydrological models of varying complexity at different scales on the QTP. We then discuss the current challenges and future opportunities, including observations and data, the understanding of processes, and model realism. The goal of this review is to provide a clear picture of where we are now and to describe future challenges and opportunities. We concluded that more efforts are needed to conduct long-term field measurements, employ more advanced observation technologies, and develop flexible and modular models to deepen our understanding of permafrost hydrological processes and to improve our ability to predict the future responses of permafrost hydrology to climate changes.
  •  
36.
  • Han, Ruiping, et al. (author)
  • Review on Heat-Utilization Processes and Heat-Exchange Equipment in Biogas Engineering
  • 2016
  • In: Journal of Renewable and Sustainable Energy. - : AIP Publishing. - 1941-7012. ; 8:3
  • Journal article (peer-reviewed)abstract
    • With the increasing demand for environmental protection and renewable energy, bioenergy technology has been attracting considerable attention. Anaerobic digestion (AD) is the process to convert the low-grade biomass into bioenergy, in which both heat-recovery and -recycling should be treated carefully in order to improve the process efficiency. In this work, the heat-recovery and its utilization processes were reviewed, and different types of heat exchangers as well as their advantages in biogas engineering were surveyed. It shows that the recovery and utilization of the waste heat from biogas plants with an internal system, such as slurry effluent unit, the combined heat and power unit, the sanitation unit, and the internal recycle unit, are important for improving the AD efficiency of biogas production. For example, the recovery and recycling of waste heat from the effluent can result in a 2-3 °C temperature increase for the inlet manure slurry. For thermophilic AD, the heat recovery from effluent can save about 50% of the total heat requirement. The external heating process is more suitable for large- and medium-scale biogas plants, and the heat transfer coefficient of external heating (850-1000 W/m2 K-1) is almost two-times higher than that of the internal heating (300-400 W/m2 K-1). To utilize the waste heat in biogas plants, heat exchangers have been designed for biogas slurry. However, further improvement on the heat exchangers with anti-blockage, anti-fouling, high efficiency, and low investment is still needed. Moreover, the heat exchanger suitable for a low-temperature-difference system is specially needed in China, but the development is still in its infancy. Therefore, to tailor to the Chinese national conditions, special external heating processes should be designed and reoriented to the diversity of biomass, the climatic environmental conditions, and the renewable Chinese policies
  •  
37.
  • He, Minhui, et al. (author)
  • Recent advances in dendroclimatology in China
  • 2019
  • In: Earth-Science Reviews. - : Elsevier BV. - 0012-8252 .- 1872-6828. ; 194, s. 521-535
  • Research review (peer-reviewed)abstract
    • Considerable progress has been made in dendroclimatological research in China during the period 2000-2017, including a significant increase in the spatial coverage of tree-ring chronologies developed for paleoclimatic research. New tree-ring sampling sites have been established across the Tibetan Plateau, as well as the north-eastern and sub-tropical eastern parts of China. Most of the studies use coniferous trees, although different plant functional types (e.g., broadleaf species and shrubs) have also been increasingly investigated. Tree-ring chronologies longer than 600 years, however, are mostly found on the Tibetan Plateau, with the longest one extending back to 2637 BCE (before Common Era). Most tree-ring records in the eastern parts of China are < 400 years long. Tree-ring width is the most commonly studied parameter, although stable isotope ratios and wood density data have also been obtained for specific sites. Stable oxygen isotope data frequently shares a common hydroclimate signal, whereas the climate or environmental signals remain inconsistent for the few available stable carbon isotope records. In general, tree-ring width-based temperature reconstructions originate from higher elevation sites (i.e., treeline) compared to hydroclimate reconstructions. Precipitation or drought reconstructions are mainly obtained from regions with an annual precipitation of < 800 mm. Most of the tree-ring reconstructions are based on individual site or local-scale chronologies, although a limited number of regional-scale and field reconstructions have been produced. The most prominent identified characteristics of the recent advances in dendroclimatological research for China have manifested in aspects such as an expanded network of sampling sites, improved climate reconstruction methodology, and improved uncertainty estimations in the latter. Furthermore, the traditional statistical-based tree growth climate relationships have been supplemented by monitoring and modeling approaches. Based on the progress from 2000 to 2017, and on the research potential of the country in this field, we expect additional widening of the dendroclimatological investigations in China during the coming years.
  •  
38.
  • Jiang, Jingjing, et al. (author)
  • Sino-European Differences in the Genetic Landscape and Clinical Presentation of Pheochromocytoma and Paraganglioma
  • 2020
  • In: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 105:10
  • Journal article (peer-reviewed)abstract
    • Context: Pheochromocytomas and paragangliomas (PPGLs) are characterized by distinct genotype-phenotype relationships according to studies largely restricted to Caucasian populations.Objective: To assess for possible differences in genetic landscapes and genotype-phenotype relationships of PPGLs in Chinese versus European populations.Design: Cross-sectional study.Setting: 2 tertiary-care centers in China and 9 in Europe.Participants: Patients with pathologically confirmed diagnosis of PPGL, including 719 Chinese and 919 Europeans.Main Outcome Measures: Next-generation sequencing performed in tumor specimens with mutations confirmed by Sanger sequencing and tested in peripheral blood if available. Frequencies of mutations were examined according to tumor location and catecholamine biochemical phenotypes.Results: Among all patients, higher frequencies of HRAS, FGFR1, and EPAS1 mutations were observed in Chinese than Europeans, whereas the reverse was observed for NF1, VHL, RET, and SDHx. Among patients with apparently sporadic PPGLs, the most frequently mutated genes in Chinese were HRAS (16.5% [13.6-19.3] vs 9.8% [7.6-12.1]) and FGFR1 (9.8% [7.6-12.11 vs 2.2% [1.1-3.3]), whereas among Europeans the most frequently mutated genes were NF1 (15.9% [13.2-18.6) vs 6.6% [4.7-8.5)) and SDHx (10.7% [8.4-13.0] vs 4.2% [2.6-5.7]). Among Europeans, almost all paragangliomas lacked appreciable production of epinephrine and identified gene mutations were largely restricted to those leading to stabilization of hypoxia inducible factors. In contrast, among Chinese there was a larger proportion of epinephrine-producing paragangliomas, mostly due to HRAS and FGFR1 mutations.Conclusions: This study establishes Sino-European differences in the genetic landscape and presentation of PPGLs, including ethnic differences in genotype-phenotype relationships indicating a paradigm shift in our understanding of the biology of these tumors.
  •  
39.
  • Li, Jingjing, et al. (author)
  • Optical magnetic plasma in artificial flowers
  • 2009
  • In: Optics Express. - 1094-4087. ; 17:13, s. 10800-10805
  • Journal article (peer-reviewed)abstract
    • We report the design of an artificial flower-like structure that supports a magnetic plasma in the optical domain. The structure is composed of alternating "petals" of conventional dielectrics (epsilon > 0) and plasmonic materials (Re(epsilon) < 0). The induced effective magnetic current on such a structure possesses a phase lag with respect to the incident TE-mode magnetic field, similar to the phase lag between the induced electric current and the incident TM-mode electric field on a metal wire. An analogy is thus drawn with an artificial electric plasma composed of metal wires driven by a radio frequency excitation. The effective medium of an array of flowers has a negative permeability within a certain wavelength range, thus behaving as a magnetic plasma.
  •  
40.
  • Li, Mengjun, et al. (author)
  • Selecting and Testing of Cement-Bonded Magnetite and Chalcopyrite as Oxygen Carrier for Chemical-Looping Combustion
  • 2022
  • In: Energies. - : MDPI AG. - 1996-1073 .- 1996-1073. ; 15:14
  • Journal article (peer-reviewed)abstract
    • Combining iron and copper ores can generate an oxygen carrier that has a synergic effect of high temperature resistance and high reactivity. In this work, typical cements available in the market were studied as binders to bind magnetite and chalcopyrite to develop a suitable oxygen carrier for chemical-looping combustion (CLC). A first selection step suggested that an aluminate cement, namely CA70, could favor the generation of oxygen carrier particles having good crushing strength, good particle yield, and high reactivity. The CA70-bonded oxygen carrier was then subjected to cyclic tests with CH4, CO, and H-2 in reduction and in air oxidation at temperatures of 850, 900, and 950 degrees C with gas concentrations of 5, 10, 15, and 20% in a batch-fluidized bed reactor. The increase in temperature promoted the fuel conversion. At 950 degrees C, the conversions of CH4 and CO reached up to 80.4% and 99.2%, respectively. During more than 30 cycles, the oxygen carrier kept a similar reactivity to the fresh carrier and maintained its composition and physical properties. The oxygen transport capacity was maintained at 21-23%, and the phases were CuO, Fe2O3, Al2O3, and minor CaS. In the used sample, some grains were observed, but the morphology was not greatly changed. Agglomeration was absent during all the cycles, except for the deep reduction with H-2.
  •  
41.
  • Liu, Jingjing, et al. (author)
  • Effects of short-term motor training on accuracy and precision of simple jaw and finger movements after orthodontic treatment and orthognathic surgery : A case-control study
  • 2023
  • In: Journal of Oral Rehabilitation. - : John Wiley & Sons. - 1365-2842. ; 50:8, s. 635-643
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Orthognathic surgery has been performed with increasing frequency for the treatment of severe malocclusion, yet the postsurgical neuromuscular recovery of patients has been inadequately studied.OBJECTIVE: To investigate the effect of short-term and simple jaw motor training on accuracy and precision of jaw motor control in patients following orthodontic treatment and orthognathic surgery.METHODS: ) to describe the motor performance. Furthermore, the changes in amplitude before and after training were measured in percentage.RESULTS: of simple jaw and finger movements significantly decreased after motor training (p ≤ .018) in all groups. The relative changes in finger movements were higher than jaw movements (p < .001) but with no differences among the groups (p ≥ .247).CONCLUSION: Both accuracy and precision of simple jaw and finger movements improved after short-term motor training in all three groups, demonstrating the inherent potential for optimization of novel motor tasks. Finger movements improved more than jaw movements but with no differences between groups, suggesting that changes in occlusion and craniofacial morphology are not associated with impaired neuroplasticity or physiological adaptability of jaw motor function.
  •  
42.
  • Liu, Yaoqian, et al. (author)
  • Adjusting the rheological properties of corn-straw slurry to reduce the agitation power consumption in anaerobic digestion
  • 2018
  • In: Bioresource Technology. - : Elsevier. - 0960-8524 .- 1873-2976. ; 272, s. 360-369
  • Journal article (peer-reviewed)abstract
    • Agitation power consumption (P) in the anaerobic digestion of biogas plants is a major consumer of electric energy. To reduce P by adjusting the rheological properties, in this work, the rheological properties of the corn-straw slurry were studied systematically considering the effects of TS, temperature and particle-size, and P was calculated based on the rheological behavior of the corn-straw slurry. The investigation shows that the corn-straw slurry is a non-Newtonian fluid and exhibit shear-thinning behavior, and the rheological properties can be well described with the power law model. The size-reduction is more effective compared to the option of temperature-increase to improve the agitation power efficiency, and the value of P can be reduced by up to 48.11 %. Since the size-reduction can also increase the methane yield, the reduction of the particle-size is a promising option to save P, especially at relatively high TSs and for the thermophilic AD process.
  •  
43.
  • Liu, Yaoqian, et al. (author)
  • Reducing the agitation power consumption in anaerobic digestion of corn straw by adjusting the rheological properties
  • 2019
  • In: Energy Procedia. - : Elsevier. - 1876-6102. ; 158, s. 1267-1272
  • Journal article (peer-reviewed)abstract
    • Agitation power consumption (P) in the anaerobic digestion of biogas plants is a major part of the electric energy consumption. To reduce P by adjusting the rheological properties, in this work, the rheological properties of corn straw slurry were studied systematically with the consideration of the effects of TS, temperature and particle sizes. The P was calculated based on the rheological behaviour of corn straw slurry. The investigation shows that the thermophilic digestion is effective only for the slurry with a relatively high TS. The size-reduction is more effective at higher TS compared to the option of increasing temperature in order to improve the agitation power efficiency, and the value of P can be reduced by up to 48.11 %. Since the size-reduction can also increase the methane yield, the adjustment of particle sizes is a promising option to save P, especially at higher TS.
  •  
44.
  • Liu, Zhizhen, et al. (author)
  • Three-Dimensional Upper Bound Limit Analysis of Tunnel Stability with an Extended Collapse Mechanism
  • 2022
  • In: KSCE Journal of Civil Engineering. - : Korean Society Of Civil Engineers (KSCE). - 1226-7988 .- 1976-3808. ; 26:12, s. 5318-5327
  • Journal article (peer-reviewed)abstract
    • A three-dimensional collapse mechanism that can consider a combined collapse of the tunnel roof and the side walls is proposed in this work. The three-dimensional upper bound support pressure is formulated with the power balance principal in the upper bound theorem. The nonlinear Mohr-Coulomb failure criterion is used to replace the commonly used linear MohrCoulomb failure criterion. The method has been validated by a series of examples, in which the three-dimensional collapse mechanism and support pressures are in a good agreement with the numerical results and solutions found in the literatures. Furthermore, sensitivity analyses of the geotechnical and geometrical parameters on the support pressure are conducted and the collapsing range is measured. The results show that a higher value of nonlinear failure coefficient, tensile strength, initial cohesion and tangential internal friction angle can increase tunnel stability, while tunnel stability is threatened by a higher value of burial depth, unit weight, tunnel width and height. The predicted collapse range increases noticeably with the increase of the nonlinear coefficient. This study is of great significance for predicting the three-dimensional safety support pressure and collapse mechanism of tunnel.
  •  
45.
  • Lu, Yonglong, et al. (author)
  • Interaction between pollution and climate change augments ecological risk to a coastal ecosystem
  • 2018
  • In: Ecosystem Health and Sustainability. - : American Association for the Advancement of Science (AAAS). - 2096-4129 .- 2332-8878. ; 4:7, s. 161-168
  • Journal article (peer-reviewed)abstract
    • Pollution and climate change are among the most challenging issues for countries with developing economies, but we know little about the ecological risks that result when these pressures occur together. We explored direct effects of, and interactions between, environmental pollution and climate change on ecosystem health in the Bohai Sea region of Northern China. We developed an integrated approach to assess ecological risks to this region under four scenarios of climate change. Although ecological risks to the system from pollution alone have been declining, interactions between pollution and climate change have enhanced ecological risks to this coastal/marine ecosystem. Our results suggest that current policies focused strictly on pollution control alone should be changed to take into account the interactive effects of climate change so as to better forecast and manage potential ecological risks.
  •  
46.
  • Strickson, Sam, et al. (author)
  • Oxidised IL-33 drives COPD epithelial pathogenesis via ST2-independent RAGE/EGFR signalling complex
  • 2023
  • In: European Respiratory Journal. - 0903-1936. ; 62:3
  • Journal article (peer-reviewed)abstract
    • Background Epithelial damage, repair and remodelling are critical features of chronic airway diseases including chronic obstructive pulmonary disease (COPD). Interleukin (IL)-33 released from damaged airway epithelia causes inflammation via its receptor, serum stimulation-2 (ST2). Oxidation of IL-33 to a non-ST2-binding form (IL-33ox) is thought to limit its activity. We investigated whether IL-33ox has functional activities that are independent of ST2 in the airway epithelium. Methods In vitro epithelial damage assays and three-dimensional, air–liquid interface (ALI) cell culture models of healthy and COPD epithelia were used to elucidate the functional role of IL-33ox. Transcriptomic changes occurring in healthy ALI cultures treated with IL-33ox and COPD ALI cultures treated with an IL-33-neutralising antibody were assessed with bulk and single-cell RNA sequencing analysis. Results We demonstrate that IL-33ox forms a complex with receptor for advanced glycation end products (RAGE) and epidermal growth factor receptor (EGFR) expressed on airway epithelium. Activation of this alternative, ST2-independent pathway impaired epithelial wound closure and induced airway epithelial remodelling in vitro. IL-33ox increased the proportion of mucus-producing cells and reduced epithelial defence functions, mimicking pathogenic traits of COPD. Neutralisation of the IL-33ox pathway reversed these deleterious traits in COPD epithelia. Gene signatures defining the pathogenic effects of IL-33ox were enriched in airway epithelia from patients with severe COPD. Conclusions Our study reveals for the first time that IL-33, RAGE and EGFR act together in an ST2-independent pathway in the airway epithelium and govern abnormal epithelial remodelling and mucoobstructive features in COPD.
  •  
47.
  • Szykowska, Aleksandra, et al. (author)
  • Selection and structural characterization of anti-TREM2 scFvs that reduce levels of shed ectodomain
  • 2021
  • In: Structure. - : Elsevier BV. - 0969-2126 .- 1878-4186. ; 29:11, s. 1241-
  • Journal article (peer-reviewed)abstract
    • Mutations in TREM2, a receptor expressed by microglia in the brain, are associated with an increased risk of neurodegeneration, including Alzheimer's disease. Numerous studies support a role for TREM2 in sensing damaging stimuli and triggering signaling cascades necessary for neuroprotection. Despite its significant role, ligands and regulators of TREM2 activation, and the mechanisms governing TREM2-dependent responses and its cleavage from the membrane, remain poorly characterized. Here, we present phage display generated antibody single-chain variable fragments (scFvs) to human TREM2 immunoglobulin-like domain. Co-crystal structures revealed the binding of two scFvs to an epitope on the TREM2 domain distal to the putative ligand-binding site. Enhanced functional activity was observed for oligomeric scFv species, which inhibited the production of soluble TREM2 in a HEK293 cell model. We hope that detailed characterization of their epitopes and properties will facilitate the use of these renewable binders as structural and functional biology tools for TREM2 research.
  •  
48.
  • Thylen, Lars, et al. (author)
  • Limits on Integration as Determined by Power Dissipation and Signal-to-Noise Ratio in Loss-Compensated Photonic Integrated Circuits Based on Metal/Quantum-Dot Materials
  • 2010
  • In: IEEE Journal of Quantum Electronics. - 0018-9197 .- 1558-1713. ; 46:4, s. 518-524
  • Journal article (peer-reviewed)abstract
    • We analyze the power dissipation that is associated with using the gain of an embedded medium (quantum dots) to overcome the losses inherent in plasmonics systems employed to produce a negative dielectric constant for nanophotonics circuits. This power dissipation is primarily due to the dissipative losses in the metal structures and Auger recombination in the quantum dots. The impact of amplifier mediated signal-to-noise ratio (SNR) degradation and its effect on integration is analyzed, and a tradeoff between low power dissipation and SNR is quantified.
  •  
49.
  • Wang, Di, et al. (author)
  • Transmission of clones of carbapenem-resistant Escherichia coli between a hospital and an urban wastewater treatment plant*
  • 2023
  • In: Environmental Pollution. - : Elsevier. - 0269-7491 .- 1873-6424. ; 336
  • Journal article (peer-reviewed)abstract
    • Carbapenem-resistant Enterobacterales (CRE) constitute an urgent threat to worldwide public health. The spread of CRE is facilitated by transmission via the environment. Wastewater treatment plants (WWTPs) are considered to be important sources of antibiotic resistance and hot spots of antibiotic-resistant bacteria (ARB) which can facilitate dissemination of antibiotic resistance genes. In this study, water samples were collected over one year from a WWTP in Jinan, Shandong province, China, from different functional sites in the wastewater treatment process. Carbapenem-resistant Escherichia coli (CREC) were isolated by selective cultivation and whole-genome sequenced to investigate the occurrence and characteristics of CREC in the WWTP. A total of 77 CREC isolates were included in the study and the detection rate of CREC in the WWTP water inlet was found to be 85%. An additional 10 CREC were isolated from a nearby teaching hospital during the sampling period and included for comparison to the environmental isolates. Susceptibility testing showed that all CREC were multidrug-resistant. 6 different carbapenem resistance genes (CRGs) were detected, including blaNDM-5 (n = 75), blaNDM-1 (n = 6), blaNDM-4 (n = 3), blaNDM-6 (n = 1), blaNDM-9 (n = 1), and blaKPC-2 (n = 4). 42 CREC isolates were whole-genome sequenced with Illumina short-read sequencing. 11 of these were also sequenced with Nanopore long-read sequencing. Plasmids carrying CRGs were found to belong to IncX3 (n = 35), IncFII (n = 12), IncFIA (n = 5), IncFIB (n = 2), IncC (n = 1), and IncP6 (n = 1). Clonal dissemination of CREC belonging to ST167, ST448, and ST746 was observed between different parts of the WWTP. Furthermore, isolates from the WWTP, including an isolate belonging to the high-risk ST167 strain, were found to be clonally related to CREC isolated at the hospital. The spread of CRGs is of considerable concern and strategies to prevent environmental dissemination of this contaminant urgently needs to be implemented.
  •  
50.
  • Wang, Jingjing, et al. (author)
  • Multirate mass transfer simulation of denitrification in a woodchip bioreactor
  • 2023
  • In: Journal of Hydrology. - : Elsevier. - 0022-1694 .- 1879-2707. ; 624
  • Journal article (peer-reviewed)abstract
    • Denitrifying woodchip bioreactors (DWBs) have proven to be an efficient nature-based solution for nitrate removal. Modeling DWBs is required for improving their design and operation, but is hindered by the complexity of the modeled system where numerous chemical species and model parameters are needed. Reactions inside the woodchips are different from those at the edges, causing chemical localization (i.e., apparent simultaneous occurrence of incompatible reactions). We used the Multi Rate Mass Transfer (MRMT) approach to overcome these problems when simulating reactive transport processes in a DWB located at Kiruna, Sweden. Besides denitrification, other nitrogen-cycling processes (e.g., nitrification, dissimilatory nitrate reduction to ammonium, anammox) and alternative electron donors (e.g. oxygen, sulfate) were also considered. Biomass concentration is incorporated into the biochemical reaction rates, including growth and decay, to characterize microbial catalysis. We found that the MRMT model: 1) can account for the heterogeneity of the porous woodchips; 2) was capable of reproducing the nitrogen species evolution in the DWB with kinetic parameters from the literature; and 3) allows reproducing localized biochemical reactions (e.g., aerobic reactions on the woodchip edges, near the DWB entrance and anaerobic reactions inside); and 4) reproduces the full denitrification reactions sequence, but with the different reactions occurring in different portions of the woodchip (e.g., nitrate to nitrite near the edges and nitrite to nitrous oxide further inside). The latter observation suggests that increasing woodchip size may reduce the outflow of these undesired species.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 64
Type of publication
journal article (56)
conference paper (6)
research review (2)
Type of content
peer-reviewed (64)
Author/Editor
Lu, Xiaohua (14)
Ji, Xiaoyan (13)
Li, Jingjing (8)
Liu, Yang (3)
Wang, Fei (3)
Wang, Jun (3)
show more...
North, Kari E. (3)
Franks, Paul W. (3)
Shu, Xiao-Ou (3)
Zheng, Wei (3)
Ridker, Paul M. (3)
Chasman, Daniel I. (3)
Ikram, M. Arfan (3)
van Duijn, Cornelia ... (3)
Magnusson, Patrik K ... (3)
Pedersen, Nancy L (3)
Zhao, Wei (3)
Rotter, Jerome I. (3)
Nelson, Christopher ... (3)
Gieger, Christian (3)
Peters, Annette (3)
Samani, Nilesh J. (3)
Munroe, Patricia B. (3)
Fornage, Myriam (3)
Morrison, Alanna C (3)
Psaty, Bruce M (3)
Hayward, Caroline (3)
Gudnason, Vilmundur (3)
Campbell, Archie (3)
Polasek, Ozren (3)
Chen, Yii-Der Ida (3)
van der Harst, Pim (3)
Liu, Jianjun (3)
Wang, Jing (3)
Ntalla, Ioanna (3)
Smith, Jennifer A (3)
Faul, Jessica D (3)
Weir, David R (3)
Kardia, Sharon L R (3)
Cheng, Ching-Yu (3)
Wang, Ya Xing (3)
Wong, Tien Yin (3)
Feitosa, Mary F. (3)
Snieder, Harold (3)
Liu, Jingjing (3)
van Dam, Rob M. (3)
Mook-Kanamori, Denni ... (3)
Noordam, Raymond (3)
Bouchard, Claude (3)
Brown, Michael R (3)
show less...
University
Luleå University of Technology (21)
Uppsala University (10)
Lund University (10)
Royal Institute of Technology (8)
Karolinska Institutet (8)
Umeå University (5)
show more...
Chalmers University of Technology (5)
Stockholm University (4)
Linköping University (4)
University of Gothenburg (3)
Mälardalen University (2)
Swedish University of Agricultural Sciences (2)
Malmö University (1)
show less...
Language
English (64)
Research subject (UKÄ/SCB)
Engineering and Technology (30)
Natural sciences (27)
Medical and Health Sciences (17)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view