SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Weis Gerald) "

Search: WFRF:(Weis Gerald)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Zhang, Yafan, et al. (author)
  • Simulation-driven development of a novel SiC embedded power module design concept
  • 2017
  • In: 2017 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2017. - : Institute of Electrical and Electronics Engineers (IEEE). - 9781509043446
  • Conference paper (peer-reviewed)abstract
    • Silicon carbide embedded power modules enable a compact and cost competitive packaging solution for high-switching frequency and high-temperature operation applications. Power module packaging technologies span several engineering domains. At the early design stage, simulation-driven development is necessary to shorten the design period and reduce the design cost. This paper presents a novel design concept of a three-phase embedded power module (1200 V, 20 A, 55 mm × 36 mm × 0.808 mm) including silicon carbide metal-oxide-semiconductor field-effect transistor and antiparallel diode dies. Based on the E/CAD design data different layer built-up designs have been tested against thermal, mechanical, and electrical behavior. The obtained simulation data then have been evaluated against a commercial available power module (Motion Smart Power Module SMP33) which utilizes over mold direct bonded copper substrates with soldered semiconductor dies and bond wire contacts. Compared to the conventional module, the loop conductive interconnection parasitic inductance and resistance of the design concept (Vdc+ to Vdc-) reduces approximately by 88 % and 72 %, respectively. The average junction to case thermal resistance has been improved by approximately more than 10 % even though the total package size reduces by approximately 88 %. Furthermore, the contours of deformation and stresses have been investigated for the design concept in the thermomechanical simulation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view