SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wertheim B.) "

Search: WFRF:(Wertheim B.)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Gioti, Anastasia, et al. (author)
  • Sex peptide of Drosophila melanogaster males is a global regulator of reproductive processes in females
  • 2012
  • In: Proceedings of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 279:1746, s. 4423-4432
  • Journal article (peer-reviewed)abstract
    • Seminal fluid proteins (Sfps) alter female behaviour and physiology and can mediate sexual conflict. In Drosophila melanogaster, a single Sfp, the sex peptide (SP), triggers remarkable post-mating responses in females, including altered fecundity, feeding, immunity and sexual receptivity. These effects can favour the evolutionary interests of males while generating costs in females. We tested the hypothesis that SP is an upstream master-regulator able to induce diverse phenotypes through efficient induction of widespread transcriptional changes in females. We profiled mRNA responses to SP in adult female abdomen (Abd) and head+thorax (HT) tissues using microarrays at 3 and 6 h following mating. SP elicited a rich, subtle signature of temporally and spatially controlled mRNAs. There were significant alterations to genes linked to egg development, early embryogenesis, immunity, nutrient sensing, behaviour and, unexpectedly, phototransduction. There was substantially more variation in the direction of differential expression across time points in the HT versus Abd. The results support the idea that SP is an important regulator of gene expression in females. The expression of many genes in one sex can therefore be under the influence of a regulator expressed in the other. This could influence the extent of sexual conflict both within and between loci.
  •  
3.
  • Martin, DP, et al. (author)
  • The emergence and ongoing convergent evolution of the N501Y lineages coincides with a major global shift in the SARS-CoV-2 selective landscape
  • 2021
  • In: medRxiv : the preprint server for health sciences. - : Cold Spring Harbor Laboratory.
  • Journal article (other academic/artistic)abstract
    • The emergence and rapid rise in prevalence of three independent SARS-CoV-2 “501Y lineages’’, B.1.1.7, B.1.351 and P.1, in the last three months of 2020 prompted renewed concerns about the evolutionary capacity of SARS-CoV-2 to adapt to both rising population immunity, and public health interventions such as vaccines and social distancing. Viruses giving rise to the different 501Y lineages have, presumably under intense natural selection following a shift in host environment, independently acquired multiple unique and convergent mutations. As a consequence, all have gained epidemiological and immunological properties that will likely complicate the control of COVID-19. Here, by examining patterns of mutations that arose in SARS-CoV-2 genomes during the pandemic we find evidence of a major change in the selective forces acting on various SARS-CoV-2 genes and gene segments (such as S, nsp2 and nsp6), that likely coincided with the emergence of the 501Y lineages. In addition to involving continuing sequence diversification, we find evidence that a significant portion of the ongoing adaptive evolution of the 501Y lineages also involves further convergence between the lineages. Our findings highlight the importance of monitoring how members of these known 501Y lineages, and others still undiscovered, are convergently evolving similar strategies to ensure their persistence in the face of mounting infection and vaccine induced host immune recognition.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Wortel, Meike T., et al. (author)
  • Towards evolutionary predictions : current promises and challenges
  • 2023
  • In: Evolutionary Applications. - : John Wiley & Sons. - 1752-4571. ; 16:1, s. 3-21
  • Research review (peer-reviewed)abstract
    • Evolution has traditionally been a historical and descriptive science, and predicting future evolutionary processes has long been considered impossible. However, evolutionary predictions are increasingly being developed and used in medicine, agriculture, biotechnology and conservation biology. Evolutionary predictions may be used for different purposes, such as to prepare for the future, to try and change the course of evolution or to determine how well we understand evolutionary processes. Similarly, the exact aspect of the evolved population that we want to predict may also differ. For example, we could try to predict which genotype will dominate, the fitness of the population or the extinction probability of a population. In addition, there are many uses of evolutionary predictions that may not always be recognized as such. The main goal of this review is to increase awareness of methods and data in different research fields by showing the breadth of situations in which evolutionary predictions are made. We describe how diverse evolutionary predictions share a common structure described by the predictive scope, time scale and precision. Then, by using examples ranging from SARS-CoV2 and influenza to CRISPR-based gene drives and sustainable product formation in biotechnology, we discuss the methods for predicting evolution, the factors that affect predictability and how predictions can be used to prevent evolution in undesirable directions or to promote beneficial evolution (i.e. evolutionary control). We hope that this review will stimulate collaboration between fields by establishing a common language for evolutionary predictions.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view