SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Whitehouse Martin J. 1962 ) "

Search: WFRF:(Whitehouse Martin J. 1962 )

  • Result 1-50 of 205
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gardiner, N.J., et al. (author)
  • Contrasting Granite Metallogeny through the Zircon Record: A Case Study from Myanmar
  • 2017
  • In: Scientific Reports. - 2045-2322. ; 7
  • Journal article (peer-reviewed)abstract
    • Granitoid-hosted mineral deposits are major global sources of a number of economically important metals. The fundamental controls on magma metal fertility are tectonic setting, the nature of source rocks, and magma differentiation. A clearer understanding of these petrogenetic processes has been forged through the accessory mineral zircon, which has considerable potential in metallogenic studies. We present an integrated zircon isotope (U-Pb, Lu-Hf, O) and trace element dataset from the paired Cu-Au (copper) and Sn-W (tin) magmatic belts in Myanmar. Copper arc zircons have juvenile εHf (+7.6 to +11.5) and mantle-like δ18O (5.2–5.5‰), whereas tin belt zircons have low εHf (−7 to −13) and heavier δ18O (6.2–7.7‰). Variations in zircon Hf and U/Yb reaffirm that tin belt magmas contain greater crustal contributions than copper arc rocks. Links between whole-rock Rb/Sr and zircon Eu/Eu* highlight that the latter can monitor magma fractionation in these systems. Zircon Ce/Ce* and Eu/Eu* are sensitive to redox and fractionation respectively, and here are used to evaluate zircon sensitivity to the metallogenic affinity of their host rock. Critical contents of Sn in granitic magmas, which may be required for the development of economic tin deposits, are marked by zircon Eu/Eu* values of ca. ≤0.08.
  •  
2.
  • Merle, Renaud E., 1976-, et al. (author)
  • Pb-Pb ages and initial Pb isotopic composition of lunar meteorites : NWA 773 clan, NWA 4734, and Dhofar 287
  • 2020
  • In: Meteoritics and Planetary Science. - : John Wiley & Sons, Ltd. - 1086-9379 .- 1945-5100. ; 55:8
  • Journal article (peer-reviewed)abstract
    • Abstract Constraining the duration of magmatic activity on the Moon is essential to understand how the lunar mantle evolved chemically through time. Determining age and initial isotopic compositions of mafic lunar meteorites is a critical step in defining the periods of magmatic activity that occurred during the history of the Moon and to constrain the chemical characteristics of mantle components involved in the sources of the magmas. We have used the in situ Pb-Pb SIMS technique to investigate eight lunar gabbros and basalts, including six meteorites from the Northwest Africa (NWA) 773 clan (NWA 2727, NWA 2700, NWA 3333, NWA 2977, NWA 773, and NWA 3170), NWA 4734, and Dhofar 287A. These samples have been selected as there is no clear agreement on their age and they are all from the dominant low titanium chemical group. We have obtained ages of 2981 ± 12 Ma for NWA 4734 and 3208 ± 22 Ma for Dhofar 287. For the NWA 773 clan, four samples (the fine-grained basalt NWA 2727 and the three gabbros NWA 773, NWA 2977, NWA 3170) out of six yielded isochron-calculated ages that are identical within uncertainties and yielding an average age of 3086 ± 5 Ma. The age obtained for the fine-grained basalt NWA 2700 is not precise enough for comparison with the other samples. The gabbroic sample NWA 3333 yielded an age of 3038 ± 20 Ma suggesting that two distinct magmatic events may be recorded in the meteorites of the NWA 773 clan. The present study aims to identify and assess all potential issues that are associated with different ways to date lunar rocks using U-Pb?based methods. To achieve this, we have compared the new ages with the previously published data set. The entire age data set from lunar mafic meteorites was also screened to identify data showing analytical issues and evidence of resetting and terrestrial contamination. The data set combining the ages of mafic lunar meteorites and Apollo rocks suggests pulses of magmatic activity with two distinct phases between 3950 and 3575 Ma and between 3375 and 3075 Ma with the two phases separated by a gap of approximately 200 Ma. The evolution of the Pb initial ratios of the low-Ti mare basalts between approximately 3400 and 3100 Ma suggests that these rocks were progressively contaminated by a KREEP-like component.
  •  
3.
  • Virtasalo, J.J., et al. (author)
  • Pyritic event beds and sulfidized Fe (oxyhydr)oxide aggregates in metalliferous black mudstones of the Paleoproterozoic Talvivaara formation, Finland
  • 2015
  • In: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X .- 1385-013X. ; 432, s. 449-460
  • Journal article (peer-reviewed)abstract
    • The Paleoproterozoic, 2.0–1.9 Ga Talvivaara formation of Finland was deposited during the Shunga Event, a worldwide episode of enhanced accumulation of organic-rich sediments in the aftermath of the Lomagundi–Jatuli carbon isotope excursion. Sulfidic carbonaceous mudstones in the Talvivaara formation contain one of the largest known shale-hosted nickel deposits. In order to gain new insight into this Shungian sedimentary environment, sedimentological, petrographical and in situ S and Fe isotopic microanalyses were carried out on samples representing depositional and early-diagenetic conditions. The event-bedded lithology with tidal signatures in the organic-rich mudstones strongly indicates deposition from predominantly river-delivered mud on a highly-productive coastal area, below storm-wave base. The riverine supply of phosphorus, sulfate and iron supported high primary productivity and resulted in strong lateral and vertical chemical gradients in the nearshore waters with a shallow oxic surface layer underlain by euxinic water. The stratigraphic upper part of the Talvivaara formation contains banded intervals of thin alternating pyrite beds and carbonaceous mudstone beds. The pyrite beds were deposited by seaward excursions of the concentrated, acidic Fe-rich river plume subsequent to droughts or dry seasons, which led to intense pyrite precipitation upon mixing with euxinic waters. δS34 and δFe56 values of the bedded pyrite (median δS34=−10.3‰ and δFe56=−0.79‰) are consistent with the reaction of dissolved Fe(II) with H2S from bacterial sulfate reduction. Organic-rich clayey Fe-monosulfide-bearing granules were transported from the muddy estuary, and enclosed in Fe (oxyhydr)oxide aggregates that were forming by wave and current reworking in nearshore accumulations of river-delivered iron. The isotopic composition of these presently pyrrhotitic inclusions (median δS34=−3.3‰ and δFe56=−1.6‰) indicates microbial iron reduction. The Fe (oxyhydr)oxide aggregates were transported in muddy debris flows to the distal euxinic seafloor. Their Fe (oxyhydr)oxide matrix was replaced by pyrite (median δS34=+5.8‰ and δFe56=+0.81‰) at shallow sediment depths with 34S and 56Fe-enriched porewater. Wavy-crinkly laminae of possible microbial origin developed on the euxinic seafloor during low sedimentation. These results indicate episodic deposition at seasonal to multiannual time scales. δS34 and δFe56 values in the studied Fe-sulfides provide evidence of microbial isotope fractionation processes and syndepositional and early-diagenetic origin, finding no support for the previously proposed local hydrothermal activity in the Talvivaara mudstones.
  •  
4.
  • Bellucci, J. J., et al. (author)
  • Tracing martian surface interactions with the triple O isotope compositions of meteoritic phosphates
  • 2020
  • In: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X .- 1385-013X. ; 531
  • Journal article (peer-reviewed)abstract
    • The triple oxygen isotope compositions of phosphate grains in six martian meteorites have been measured by Secondary Ion Mass Spectrometry (SIMS) and combined together with their chlorine isotope and halogen concentrations have been used to constrain hydrosphere-lithosphere interactions on Mars. These samples include three enriched shergottites (Zagami, Roberts Massif 04262 and Larkman Nunatak 12011), one depleted shergottite (Tissint), an orthopyroxenite (Allan Hills 84001), and a regolith breccia (Northwest Africa 7533). The phosphates measured here have a range in δ18O [(18O/16O)sample/(18O/16O)Standard-1] × 103] from +1.0 to +6.8‰ and could be a result of indigenous mantle values, mixing with martian water, or replacement reactions taking place on the surface of Mars. Three samples have a Δ17O [δ17O-1000(1 + δ18O /1000)0.528-1] in equilibrium with the martian mantle (ALH 84001, Tissint, and Zagami), while three samples (LAR 12011, RBT 04262, and NWA 7533) have an elevated positive Δ17O outside of analytical uncertainty of the martian fractionation line (MFL). The phosphates in the latter group also have positive and negative δ37Cl [(37Cl/35Cl)sample/(37Cl/35Cl)standard – 1] × 103] and enrichments in halogens not seen in the rest of the sample suite. Perchlorate formation on Earth fractionates Cl in both positive and negative directions and generates a correlated positive Δ17O. Further, perchlorate has been detected in wt% amounts on the martian surface. Thus, these results strongly suggest the presence of multiple Cl isotope reservoirs on the martian surface that have interacted with the samples studied here over the last ca. 2 Ga of geologic time. The weighted average of Δ17O measurements from phosphate grains (n = 13) in NWA 7533, which are the explicit result of exchange reactions on the martian surface, yields a statistically robust mean value of 1.39 ± 0.19‰ (2σ, MSWD = 1.5, p = 0.13). This value likely represents an accurate estimate for an oxidized surface reservoir on Mars.
  •  
5.
  • Bollard, J., et al. (author)
  • Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules.
  • 2017
  • In: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 3
  • Journal article (peer-reviewed)abstract
    • The most abundant components of primitive meteorites (chondrites) are millimeter-sized glassy spherical chondrules formed by transient melting events in the solar protoplanetary disk. Using Pb-Pb dates of 22 individual chondrules, we show that primary production of chondrules in the early solar system was restricted to the first million years after the formation of the Sun and that these existing chondrules were recycled for the remaining lifetime of the protoplanetary disk. This finding is consistent with a primary chondrule formation episode during the early high-mass accretion phase of the protoplanetary disk that transitions into a longer period of chondrule reworking. An abundance of chondrules at early times provides the precursor material required to drive the efficient and rapid formation of planetary objects via chondrule accretion.
  •  
6.
  • Curran, N. M., et al. (author)
  • The early geological history of the Moon inferred from ancient lunar meteorite Miller Range 13317
  • 2019
  • In: Meteoritics and Planetary Science. - : John Wiley & Sons, Ltd (10.1111). - 1086-9379 .- 1945-5100. ; 54:7, s. 1401-1430
  • Journal article (peer-reviewed)abstract
    • Abstract Miller Range (MIL) 13317 is a heterogeneous basalt-bearing lunar regolith breccia that provides insights into the early magmatic history of the Moon. MIL 13317 is formed from a mixture of material with clasts having an affinity to Apollo ferroan anorthosites and basaltic volcanic rocks. Noble gas data indicate that MIL 13317 was consolidated into a breccia between 2610 ± 780 Ma and 1570 ± 470 Ma where it experienced a complex near-surface irradiation history for ~835 ± 84 Myr, at an average depth of ~30 cm. The fusion crust has an intermediate composition (Al2O3 15.9 wt%; FeO 12.3 wt%) with an added incompatible trace element (Th 5.4 ppm) chemical component. Taking the fusion crust to be indicative of the bulk sample composition, this implies that MIL 13317 originated from a regolith that is associated with a mare-highland boundary that is KREEP-rich (i.e., K, rare earth elements, and P). A comparison of bulk chemical data from MIL 13317 with remote sensing data from the Lunar Prospector orbiter suggests that MIL 13317 likely originated from the northwest region of Oceanus Procellarum, east of Mare Nubium, or at the eastern edge of Mare Frigoris. All these potential source areas are on the near side of the Moon, indicating a close association with the Procellarum KREEP Terrane. Basalt clasts in MIL 13317 are from a very low-Ti to low-Ti (between 0.14 and 0.32 wt%) source region. The similar mineral fractionation trends of the different basalt clasts in the sample suggest they are comagmatic in origin. Zircon-bearing phases and Ca-phosphate grains in basalt clasts and matrix grains yield 207Pb/206Pb ages between 4344 ± 4 and 4333 ± 5 Ma. These ancient 207Pb/206Pb ages indicate that the meteorite has sampled a range of Pre-Nectarian volcanic rocks that are poorly represented in the Apollo, Luna, and lunar meteorite collections. As such, MIL 13317 adds to the growing evidence that basaltic volcanic activity on the Moon started as early as ~4340 Ma, before the main period of lunar mare basalt volcanism at ~3850 Ma.
  •  
7.
  • Gardiner, N.J., et al. (author)
  • The closure of Palaeo-Tethys in Eastern Myanmar and Northern Thailand: New insights from zircon U–Pb and Hf isotope data.
  • 2016
  • In: Gondwana Research. - : Elsevier BV. - 1342-937X .- 1878-0571. ; 39, s. 401-422
  • Journal article (peer-reviewed)abstract
    • Two of the major granite belts of Southeast Asia are the Main Range and Eastern Province. Together, these are interpreted to represent the magmatic expression of the closure of Palaeo-Tethys during Late Palaeozoic to Early Mesozoic times. Recent geochronological and geochemical work has better delineated these belts within Peninsular Malaysia, thereby providing important constraints on the timing of Palaeo-Tethys suturing. However, the northern extension of this Palaeo-Tethyan suture is less well understood. Here we present new ion microprobe U–Pb zircon age data from northern Thailand and eastern Myanmar. Measured ages of 219 and 220 Ma from the Kyaing Tong granite imply northern extension of the Main Range Province into eastern Myanmar. The Tachileik granite in far eastern Myanmar yields an age of 266 Ma, consistent with published Eastern Province ages, and this therefore constrains the northern extension of the Palaeo-Tethys suture in eastern Myanmar. We further discuss how this suture may extend northwards into Yunnan. A Late Cretaceous age (70 Ma) measured in Thailand represents later magmatic activity, and is similar to published magmatic ages from central Myanmar. This younger magmatism is interpreted to be related to the subduction of Neo-Tethys prior to India–Asia collision. Further, we present new laser ablation zircon Hf isotope data from eastern Myanmar which suggest that Palaeoproterozoic crust underlies both the Main Range and Eastern Province granites. Our εHf model age of ca. 1750 Ma from Sibumasu, the basement underlying eastern Myanmar, lies within the range of other model ages reported thus far for the Baoshan Block north in Yunnan, interpreted by some to be the northern extension of Sibumasu.
  •  
8.
  • Gardiner, Nicholas J., et al. (author)
  • The crustal architecture of Myanmar imaged through zircon U-Pb, Lu-Hf and O isotopes : Tectonic and metallogenic implications
  • 2018
  • In: Gondwana Research. - : Elsevier BV. - 1342-937X .- 1878-0571. ; 62, s. 27-60
  • Journal article (peer-reviewed)abstract
    • The Tethys margin in central and eastern Asia is comprised of continental terranesseparated by suture zones, some of which remain cryptic. Determining the crustal architecture, and therefore the geological history, of the Eastern Tethyan margin remains challenging. Sited in the heart of this region, Myanmar is a highly prospective but poorly explored minerals jurisdiction. A better understanding of Myanmar's mineralization can only be realized through a better understanding of its tectonic history, itself reflected in at least four major magmatic belts. The Eastern and the Main Range Provinces are associated with the Late Permian to Early Triassic closure of Palaeo-Tethys. The Mogok–Mandalay–Mergui Belt and Wuntho–Popa Arc are a response to the Eocene closure of Neo-Tethys. However, magmatic ages outside these two orogenic events are also recorded. We present new zirconU-Pb, Lu-Hf and O isotope data from magmatic rocks across Myanmar, which we append to the existing dataset to isotopically characterize Myanmar's magmatic belts. Eastern Province Permian I-type magmatism has evolved εHf (−10.9 to −6.4), whilst Main Range Province Triassic S-type magmatism also records evolved εHf (−13.5 to −8.8). The Mogok-Mandalay-Mergui Belt is here divided into the Tin Province and the Mogok Metamorphic Belt. The Tin Province hosts ca. 77–50 Ma magmatism with evolved εHf (−1.2 to −15.2), and δ18O of 5.6–8.3‰. The Mogok Metamorphic Belt exhibits a more complex magmatic and metamorphic history, and granitoids record Jurassic, Late Cretaceous, and Eocene to Miocene phases of magmatism, all of which exhibit evolved εHf values between −4.6 and −17.6, and δ18O between 6.3 and 9.2‰. From the Tagaung-Myitkyina Belt, we report a magmatic age of 172 Ma and εHf of 18.1 to 10.8. To accommodate the geological evidence, we propose a tectonic model for Myanmar involving a greater Sibumasu – where the documented zircon isotopic variations reflect compositional variations in magmatic source – and invoke the role of a Tengchong Block. The Baoshan Block and Greater Sibumasu were likely assembled on or before the Triassic, a former Andean margin and suture which may lie across the Northern Shan Plateau, and reflected in isotopic differences between the northern and southern parts of the Mogok Metamorphic Belt. This contiguous Sibumasu–Baoshan Block then sutured onto the Indochina margin in the Late Triassic. We propose that a Tengchong Block within Myanmar provides for a southerly termination of the Meso-Tethys suture immediately north of the Mogok area. A discrete Tengchong Block may explain a discontinuous arc of Late Triassic to Jurassic I-type magmatism in central Myanmar, representing an Andean-type margin sited above a subducting Meso-Tethys on the margin of Sibumasu. The Tengchong Block sutured onto Greater Sibumasu before the Late Cretaceous, after which subduction of Neo-Tethys drove the magmatism of the Wuntho-Popa Arc and ultimately that of the Tin Province. The metallogenic character of granite belts in Myanmar reflects the crustal architecture of the region, which is remarkable for its prolific endowment of granite-hosted Sn-W mineralization in two quite distinct granite belts related to sequential Indosinian and Himalayan orogenesis.
  •  
9.
  • Joy, K. H., et al. (author)
  • Timing of geological events in the lunar highlands recorded in shocked zircon-bearing clasts from Apollo 16
  • 2020
  • In: Royal Society Open Science. - : Royal Society. - 2054-5703. ; 7:6
  • Journal article (peer-reviewed)abstract
    • Apollo 16 soil-like regolith breccia 65745,7 contains two zircon-bearing clasts. One of these clasts is a thermally annealed silica-rich rock, which mineralogically has affinities with the High Alkali Suite (Clast 1), and yields zircon dates ranging from 4.08 to 3.38 Ga. The other clast is a KREEP-rich impact melt breccia (Clast 2) and yields zircon dates ranging from 3.97 to 3.91 Ga. The crystalline cores of both grains, which yield dates ofca3.9 Ga, have undergone shock pressure modification at less than 20 GPa. We interpret that the U-Pb chronometer in these zircon grains has been partially reset by the Imbrium basin-forming event when the clasts were incorporated into the Cayley Plains ejecta blanket deposit. The zircon grains in Clast 1 have been partially decomposed, resulting in a breakdown polymineralic texture, with elevated U, Pb and Th abundances compared with those in the crystalline zircon. These decomposed areas exhibit younger dates around 3.4 Ga, suggesting a secondary high-pressure, high-temperature event, probably caused by an impact in the local Apollo 16 highlands area.
  •  
10.
  • Ng, S.W.-P., et al. (author)
  • Petrogenesis of Malaysian granitoids in the Southeast Asian Tin Belt: Part 1. Geochemical and Sr-Nd isotopic characteristics.
  • 2015
  • In: Geological Society of America Bulletin. - 0016-7606 .- 1943-2674. ; 127, s. 1209-1237
  • Journal article (peer-reviewed)abstract
    • The Malaysian granitoids of the Southeast Asian tin belt have been traditionally divided into a Permian to Late Triassic “I-type”–dominated arc-related Eastern province (Indochina terrane) and a Late Triassic “S-type”–dominated collision-related Main Range province (Sibumasu terrane), separated by the Bentong-Raub Paleo-Tethyan suture that closed in the Late Triassic. The present study, however, shows that this model is oversimplified and that the direct application of Chappell and White’s (1974) I- and S-type classification cannot account for many of the characteristics shared by Malaysian granitoids. Despite being commonly hornblende bearing, as is typical for I-type granites, the roof zones of the Eastern province granites are hornblende free. In addition, the Main Range province granitoids contain insignificant primary muscovite, and are dominated by biotite granites, mineralogically similar to many of the plutons of the Eastern province. In general, the Malaysian granitoids from both provinces are more enriched in high field strength elements than typical Cordilleran I- and S-type granitoids. The mineralogy and geochemistry of the Eastern province granitoids, and their relationship with contemporaneous volcanics, confirm their I-type nature. The bulk liquid lines of descent of both granitic provinces largely overlap with one another. Sr-Nd isotopic data further demonstrate that the Malaysian granitoids, especially those of the Main Range, were hybridized melts derived from two “end-member” source regions, one of which is isotopically similar to the Kontum orthoamphibolites and the other akin to the Kontum paragneisses of the Indochina block. However, there are differences in the source rocks for the two provinces, and it is suggested in this paper that these are related to differing proportions of igneous and sedimentary protoliths. The incorporation of sedimentary-sourced melts in the Eastern province is insignificant, which allowed the granites in this belt to maintain their I-type nature. The presence of minor primary tin mineralization in the Eastern province compared to the much more significant tin endowment in the Main Range is considered to reflect the incorporation of a smaller proportion of sedimentary protolith in the melt products of the former.                  
  •  
11.
  • Ng, S.W.--P., et al. (author)
  • Petrogenesis of Malaysian granitoids in the Southeast Asian Tin Belt: Part 2. U-Pb zircon geochronology and tectonic model.
  • 2015
  • In: Geological Society of America Bulletin. - 0016-7606 .- 1943-2674. ; 127, s. 1238-1258
  • Journal article (peer-reviewed)abstract
    • In our complementary geochemical study (Part 1), the Malaysian granitoids of the Southeast Asian tin belt were divided into a Middle Permian to Late Triassic I-type–dominated Eastern province (Indochina terrane) and a Triassic to Early Jurassic transitional I/S-type Main Range province (Sibumasu terrane), separated by the Bentong-Raub suture zone which closed in the Late Triassic. Previous geochronology has relied on only a few U-Pb zircon ages together with K-Ar and whole rock Rb-Sr ages that may not accurately record true magmatic ages. We present 39 new high-precision U-Pb zircon ion microprobe ages from granitoids and volcanics across the Malay Peninsula. Our results show that ages from the Eastern province granitoids span 289–220 Ma, with those from the Main Range province granitoids being entirely Late Triassic, spanning 227–201 Ma. A general westerly younging magmatic trend across the Malay Peninsula is considered to reflect steepening and roll-back of the Bentong-Raub subduction zone during progressive closure of Paleo-Tethys. The youngest ages of subduction-related granites in the Eastern province roughly coincide with the youngest ages of marine sedimentary rocks along the Paleo-Tethyan suture zone. Our petrogenetic and U-Pb zircon age data support models that relate the Eastern province granites to pre-collisional Andean-type magmatism and the western Main Range province granites to syn- and post-collisional crustal melting of Sibumasu crust during the Late Triassic. Tin mineralization was mainly associated with the latter phase of magmatism. Two alternative tectonic models are discussed to explain the Triassic evolution of the Malay Peninsula. The first involves a second Late Triassic to Jurassic or Early Cretaceous east-dipping subduction zone west of Sibumasu where subduction-related hornblende and biotite–bearing granites along Sibumasu are paired with Main Range crustal-melt tin-bearing granites, analogous to the Bolivia Cordilleran tin-bearing granite belt. The second model involves westward underthrusting of Indochina beneath the West Malaya Main Range province, resulting in crustal thickening and formation of tin-bearing granites of the Main Ranges. Cretaceous granitoids are also present locally in Singapore (Ubin diorite), on Tioman Island, in the Noring pluton, of the Stong complex (Eastern Province), and along the Sibumasu terrane in southwest Thailand and Burma (Myanmar), reflecting localized crustal melting.                  
  •  
12.
  • Niu, D.J., et al. (author)
  • A relict sulfate-methane transition zone in the mid-Devonian Marcellus Shale.
  • 2016
  • In: Geochimica et Cosmochimica Acta. - : Elsevier BV. - 0016-7037 .- 1872-9533. ; 182, s. 73-87
  • Journal article (peer-reviewed)abstract
    • A barium-enriched interval of Marcellus Shale (Middle Devonian Oatka Creek Formation) from a core in Chenango County, NY contains ∼100 μm diameter ellipsoidal grains with variable mineralogical compositions between pure barite and pure pyrite endmembers. Petrographic characterization and in-situ sulfur isotope analysis by Secondary Ion Mass Spectrometry (SIMS) was performed to better understand the diagenetic conditions under which these grains form and are preserved in the shale. Textural relationships suggest partial to complete pseudomorphic replacement of ellipsoidal barite by pyrite. Spatially, the ellipsoidal grains are concentrated in discrete layers parallel to original bedding and intervals within these layers often contain grains with similar degrees of replacement. The fraction of barite replaced by pyrite between these intervals can vary significantly, which is remarkable considering these intervals are separated by stratigraphic distances on the order of mm to cm in the shale (depths equivalent to deposition over 10’s–1000’s of years).The mean δ34S of barite and pyrite in ellipsoidal grains is 63.3 ± 3.6‰ and 2.2 ± 3.0‰, respectively, indicating that the grains are authigenic. Mass balance calculations based on density and stoichiometric differences between barite and pyrite indicate that reduction of sulfate from barite alone cannot be the sole source of sulfur in the replaced grains: only ∼23% of sulfur in pyrite comes from the dissolution of barite while the remainder derives from an additional source with δ34S = −17.6 ± 1.3‰. We suggest that pseudomorphic replacement of barite led first to the formation of greigite (Fe3S4), where one mole of sulfur was provided by barite and the other three moles of sulfur were contributed by FeS(aq); the latter formed by reaction of Fe2 + with sulfide from microbial sulfate reduction. Transformation of greigite to pyrite occurred via the sulfur addition and/or iron loss pathways. These observations suggest the following mechanism for the replacement of barite by pyrite in the ellipsoidal barite grains: (1) burial of authigenic barite below the sulfate–methane transition zone (SMTZ), and (2) partial to complete dissolution of the grain and concomitant precipitation of greigite (and its subsequent transformation to pyrite) in the presence of pore water depleted in sulfate and enriched in FeS(aq) and polysulfides. We suggest that closely-spaced intervals containing different barite to pyrite ratios may reflect fine-scale temporal shifts or fluctuations in the position of the SMTZ due to variable rates of methanogenesis and/or sedimentation during diagenesis.
  •  
13.
  • Schaltegger, U, et al. (author)
  • Zircon Petrochronology and 40Ar/39Ar Thermochronology of the Adamello Intrusive Suite, N. Italy : Monitoring the Growth and Decay of an Incrementally Assembled Magmatic System
  • 2019
  • In: Journal of Petrology. - : Oxford University Press (OUP). - 0022-3530 .- 1460-2415. ; 60:4, s. 701-722
  • Journal article (peer-reviewed)abstract
    • The Adamello intrusive suite is a composite batholith in Northern Italy, with an estimated 2000 km3 volume, assembled incrementally over a time span of 10 to 12 million years. The history of crystallization has been studied in detail through laser ablation ICP-MS and SIMS U–Pb geochronology of zircon, which records prolonged crystallization of each of the different intrusive units at mid-crustal levels between 43·47 and 33·16 Ma. The magmas were episodically extracted from this storage area and ascended to the final intrusion level at ∼6 km paleo-depth. Each batch of melt cooled very rapidly down to the ambient temperature of 250°C, evidenced by distinct cooling paths recorded by amphibole, biotite and K-feldspar 40Ar/39Ar dates. The magma source area was moving from SW to NE with time, causing increasing thermal maturity in the mid-crustal reservoir. The resulting temporal trend of higher degrees of crustal assimiliation in the course of the evolution of the magmatic system can be traced through Hf and O isotopes in zircon. Rough estimates of magma emplacement rates (‘magma flux’) yield very low values in the range of 10-4 km3/yr, typical of mid-to-upper crustal plutons and increase with time. Although we cannot discern a decrease of magma flux from our own data, we anticipate that a dramatic decrease of magma flux between 33 and 31 Ma along the northern contact lead to cessation of magma emplacement.
  •  
14.
  • Badenszki, Eszter, et al. (author)
  • Age and Origin of Deep Crustal Meta-igneous Xenoliths from the Scottish Midland Valley : Vestiges of an Early Palaeozoic Arc and ‘Newer Granite’ Magmatism
  • 2019
  • In: Journal of Petrology. - : Oxford University Press (OUP). - 0022-3530 .- 1460-2415. ; 60:8, s. 1543-1574
  • Journal article (peer-reviewed)abstract
    • Deep crustal felsic xenoliths from classic Scottish Midland Valley localities, carried to the surface by Permo-Carboniferous magmatism, are shown for the first time to include metaigneous varieties with dioritic and tonalitic protoliths. Four hypotheses regarding their origin have been evaluated: (1) Precambrian basement; (2) Permo-Carboniferous underplating; (3) ‘Newer Granite’ magmatism; (4) Ordovician arc magmatism. U–Pb zircon dating results rule out the Precambrian basement and Permo-Carboniferous underplating hypotheses, but establish that the meta-igneous xenoliths represent both ‘Newer Granite’ and Ordovician (to possibly Silurian) arc magmatism. The metadiorite xenoliths are shown to have protolith ages of c. 415 Ma with εHft zircon values ranging from +0·1 to +11·1. These are interpreted to represent unexposed ‘Newer Granite’ plutons, based on age, mineralogical, isotopic and geochemical data. This shows that Devonian ‘Newer Granite’ magmatism had a greater impact on the Midland Valley and Southern Uplands crust than previously realized. Clinopyroxene–plagioclase–quartz barometry on the metadiorites from the east and west of the Midland Valley yielded a similar pressure range of c. 5–10 kbar, and a metadiorite from the east yielded a minimum two-feldspar temperature estimate of c. 793–816°C. These results indicate that the metadiorites once resided in the middle–lower crust. In contrast, two metatonalite xenoliths have a Late Ordovician protolith age (c. 453 Ma), with zircon εHft values of +7·8 to +9·0. These are interpreted as samples of a buried Late Ordovician magmatic arc situated within the Midland Valley. Inherited zircons with similar Late Ordovician ages and εHft=453 values (+1·6 to +10·8) are present in the metadiorites, suggesting that the Devonian ‘Newer Granites’ intruded within or through this Late Ordovician Midland Valley arc. A younger protolith age of c. 430 Ma from one of the metatonalites suggests that arc activity continued until Silurian times. This validates the long-standing ‘arc collision’ hypothesis for the development of the Caledonian Orogen. Based on U–Pb zircon dating, the metatonalite and metadiorite xenoliths have both experienced metamorphism between c. 400 and c. 391 Ma, probably linked to the Acadian Orogeny. An older phase of metamorphism at c. 411 Ma was possibly triggered by the combined effects of heating owing to the emplacement of the ‘Newer Granite’ plutons and the overthrusting of the Southern Uplands terrane onto the southern margin of the Midland Valley terrane.
  •  
15.
  • Bellucci, J. J., et al. (author)
  • Insights into the chemical diversity of the martian mantle from the Pb isotope systematics of shergottite Northwest Africa 8159
  • 2020
  • In: Chemical Geology. - : Elsevier BV. - 0009-2541 .- 1872-6836. ; 545
  • Journal article (peer-reviewed)abstract
    • Shergottite Northwest Africa (NWA) 8159 is a basaltic rock derived from a mantle source with chemical characteristics that are unique in the martian meteorite suite. To further investigate this source reservoir, the Pb isotope compositions of plagioclase/maskelynite, pyroxene, phosphates, and shock melt-glass in NWA 8159 have been measured in situ by Secondary Ion Mass Spectrometry (SIMS). Due to the limited spread in Pb isotope data, these Pb isotope compositions have been used to calculate an imprecise PbPb isochron age of 3.4 ± 2.1 Ga (2σ), which is broadly consistent with the crystallization age of 2.37 ± 0.25 Ga determined previously by 147Sm143Nd. The lack of radiogenic in-growth within individual minerals since 2.4 Ga means that this sample is depleted in U, which is in agreement with NWA 8159's positive initial ε143Nd. An initial Pb composition was calculated using an x-y weighted average of the least radiogenic Pb isotope population measured in the sample. This initial Pb composition is not consistent with the model for Pb growth in the shergottite mantle at 2.4 Ga. This composition is, however, consistent with the model for the Nakhla-Chassigny mantle. Using the latter model, a source μ (238U/204Pb) of 2.6 ± 0.6 has been calculated. This μ-value is in contrast with the other depleted shergottites (1.4-1.5) and falls significantly off the array of source ε143Nd vs. μ defined by the rest of the martian meteorite suite and thus, necessitates a differentiation history distinct from the other martian meteorites. Sequestering Pb in sulphides during differentiation is the only mechanism to fractionate U from Pb and create a low-μ reservoir. Consequently, the relatively high μ-value of the source of NWA 8159 is in contrast with the positive initial ε143Nd and indicates that its mantle source region likely lacked significant sulphur. This is consistent with the lack of sulphides in the sample itself and could have played a role in its complicated oxidation history.
  •  
16.
  • Connelly, J. N., et al. (author)
  • Calibrating volatile loss from the Moon using the U-Pb system
  • 2022
  • In: Geochimica et Cosmochimica Acta. - : Elsevier. - 0016-7037 .- 1872-9533. ; 324, s. 1-16
  • Journal article (peer-reviewed)abstract
    • Previous isotope studies of lunar samples have demonstrated that volatile loss was an important part of the early history of the Moon. The radiogenic U-Pb system, where Pb has a significantly lower T50% condensation temperature than U, has the capacity to both recognize and calibrate the extent of volatile loss but this approach has been hindered by terrestrial Pb contamination of samples. We employ a novel method that integrates analyses of individual samples by Ion Microprobe and Thermal Ionization mass spectrometry to correct for ubiquitous common Pb contamination, a method that results in significantly higher estimates for mu-values (238U/204Pb) than previously reported. Using this method, six of seven samples of low-Ti basaltic meteorites return mu-values between 1900 and 9600, values that are consistent with a re-evaluation of published results that return mu-values of 510-2900 for both low-and high-Ti basalts. While some degree of fractionation during partial melting may increase mu-values, we infer that the source region(s) for the basalts must also have had elevated mu-values by the time the lunar magma ocean solidified. Models to account for the available initial Pb isotopic compositions of lunar basalts in light of timing constraints from thermal modelling imply that their source regions had a mu-value of at least 280, consistent with the elevated mu-values of lunar basalts and that inferred for their sources. Such high mu-values are attributed to the preferential loss of more than 99% of the Pb over U relative to a precursor with a Mars-like composition in the aftermath of the giant impact. Such an extensive loss of Pb is consistent with previously reported losses of other elements with comparable volatility, namely Zn, Rb, Ga and CrO2. Finally, our modelling of highly-radiogenic lunar Pb isotopes assuming crystallization of the lunar magma ocean over 100s of millions of years shows that the elevated mu-values allows for, but does not require, a young Moon formation age.
  •  
17.
  • Fisher, C.M., et al. (author)
  • Combining Nd isotopes in monazite and Hf isotopes in zircon to understand complex open-system processes in granitic magmas.
  • 2017
  • In: Geology. ; 45, s. 267-270
  • Journal article (peer-reviewed)abstract
    • Mapping the age and trace element and Sm-Nd isotope compositions of monazite grains from a peraluminous Cretaceous granite using laser ablation–split stream analysis reveals a wide range in Nd isotope and rare earth element (REE) compositions within and between single grains. These data corroborate isotopic variability indicated by Hf isotope analysis of zircon in the same granite sample. The REE variations indicate that monazite grew during fractional crystallization. Hf and Nd isotopes indicate that the granitic magma was generated from at least two distinct Proterozoic sources of approximately the same age: one component that had highly radiogenic initial 176Hf/177Hf and 143Nd/144Nd and a second component that was notably less radiogenic. This study highlights the utility of in situ REE and Sm-Nd isotope data in monazite in magmatic systems. Further, it refines the zircon-based constraints on magmatic processes because of sensitivity of light REEs to fractional crystallization, lower probability of complications owing to inheritance, and smaller analytical volumes required.
  •  
18.
  • Fleming, E.J., et al. (author)
  • Provenance of Triassic sandstones on the southwest Barents Shelf and the implication for sediment dispersal patterns in northwest Pangaea.
  • 2016
  • In: Marine and Petroleum Geology. - : Elsevier BV. - 0264-8172 .- 1873-4073. ; 78, s. 516-535
  • Journal article (peer-reviewed)abstract
    • Thick Triassic siliciclastic units form major reservoir targets for hydrocarbon exploration on the Barents Shelf; however, poor reservoir quality, possibly associated with variation in provenance, remains a key risk factor in the area. In this study, sandstone dispersal patterns on the southwest Barents Shelf are investigated through petrographic and heavy mineral analysis, garnet and rutile geochemistry and zircon U-Pb geochronology. The results show that until the Early Norian Maximum Flooding Surface, two contrasting sand types were present: (i) a Caledonian Sand Type, characterised by a high compositional maturity, a heavy mineral assemblage dominated by garnet and low chrome-spinel:zircon (CZi) values, predominantly metapelitic rutiles and mostly Proterozoic and Archaean detrital zircon ages, interpreted to be sourced from the Caledonides, and (ii) a Uralian Sand Type, characterised by a low compositional maturity, high CZi values, predominantly metamafic rutiles and Carboniferous zircon ages, sourced from the Uralian Orogeny. In addition, disparity in detrital zircon ages of the Uralian Sand Type with contiguous strata on the northern Barents Shelf reveals the presence of a Northern Uraloid Sand Type, interpreted to have been sourced from Taimyr and Severnaya Zemlya. As such, a coincidental system is inferred which delivered sand to the Northern Barents Shelf in the late Carnian/early Norian. Following the Early Norian Maximum Flooding Surface, a significant provenance change occurs. In response to Late Triassic/Early Jurassic hinterland rejuvenation, supply from the Uralian Orogen ceased and the northern Scandinavian (Caledonian) source became dominant, extending northwards out on to the southwest Barents Shelf. The data reveal a link between reservoir quality and sand type and illustrate how provenance played an important role in the development of clastic reservoirs within the Triassic of the Barents Shelf.
  •  
19.
  •  
20.
  • Naeraa, Tomas, et al. (author)
  • A lower crustal mafic source for the ca. 2550 Ma Qorqut Granite Complex in southern West Greenland
  • 2014
  • In: Lithos. - : Elsevier BV. - 0024-4937 .- 1872-6143. ; 192, s. 291-304
  • Journal article (peer-reviewed)abstract
    • The late Neoarchaean Qorqut Granite Complex is the youngest large igneous intrusion in the Nuuk region in southern West Greenland, where basement is primarily of Eoarchaean and Mesoarchaean age with a tonalite-trondhjemite-granodiorite (TTG) composition. The Qorqut granite is generally undeformed and it intruded during a prolonged period, starting at ca. 2730 Ma, characterised by crustal reworking, possibly related to syn- or post accretion tectonics or continental collision. We present major and trace element whole rock chemistry and combined U/Pb, Hf and O isotope data from zircon. We obtained a mean zircon U/Pb age of 2547 +/- 4 Ma (MSWD = 0.63). Initial sHf values range from - 12 to -18 requiring a long residence time and a rather homogeneous source. Sample averaged zircon delta O-18 values range from 6.1 +/- 0.2%. to 6.5 +/- 0.3/0.7%o best interpreted with a source region of mainly unweathered mantle derived igneous rocks. Compared to the regional TTG basement, the QGC is characterised by low CaO and Na2O and high K2O, LREE and Rb contents, and a stronger fractionated REE pattern with a negative Eu anomaly. We show that the homogeneous Hf isotope signature of the granite together with its low epsilon value and its pristine oxygen isotope composition are best explained with an Eoarchaean mafic source with a Lu-176/Hf-176 around 0.015-0.019. Trace element modelling confirms that a mafic source in REE and with an eclogitic residue and with plagioclase as a fractionating phase would generate appropriate melt compositions. Modelling requires residual rutile in the source which constrain the pressures to > ca. 13-18 kbar. Zirconium saturation temperatures suggest magma temperatures in the range 750-850 degrees C. The obtained P-T conditions suggest a lower crustal source region in a thickened crustal unit consistent with a post or late continental collisional setting. (C) 2014 Elsevier B.V. All rights reserved.
  •  
21.
  • Ng, S.W.P., et al. (author)
  • Ca. 820-640 Ma SIMS U-Pb age signal in the peripheral Vijayan Complex, Sri Lanka: Identifying magmatic pulses in the assembly of Gondwana.
  • 2017
  • In: Precambrian Research. - : Elsevier BV. - 0301-9268 .- 1872-7433. ; 294, s. 244-256
  • Journal article (peer-reviewed)abstract
    • Sri Lanka comprises three roughly north-south trending amphibolite- to granulite-facies lithotectonic complexes, from west to east the Highland Complex, the Wanni Complex, and the Vijayan Complex. These terranes were correlated with other East Gondwana continental terranes with similar lithologies forming at similar ages. The Wanni Complex and the Vijayan Complex have been interpreted as volcanic arc terranes brought together by a double-sided subduction. The Highland Complex represents the metamorphosed accretionary prism within the suture when the Wanni and Vijayan Complexes were juxtaposing against each other. In contrast to the Wanni and Highland Complexes, the Vijayan Complex has yielded only a few geochronological data with satisfactory precision. Previous studies suggested that the Vijayan Complex comprises ∼1100–924 Ma granitic gneisses, which were metamorphosed during ∼590–456 Ma. More recently, ∼772–617 Ma mafic intrusions have been identified. This study divides the Vijayan granitic gneisses and the associated melt products geochemically into a low-Nb series and a more primitive high-Nb series. Our SIMS U-Pb zircon data suggested that both series have protolith magmatic ages of ∼1062–935 Ma, and metamorphic ages of ∼580–521 Ma, which is consistent with previous work. However, some of the Vijayan granitic gneisses and granitic anatectic melt products at the Highland-Vijayan tectonic mixed zone preserve an additional Tonian-Cryogenian (∼820–630 Ma) age signal. This age signal suggested that felsic magmatism also occurred when mafic granulites were emplaced along the Highland-Vijayan boundary, which is broadly coeval with to the bimodal magmatism occurring along the Highland-Wanni boundary. This study also suggests that charnockitisation in the Vijayan Complex occurred at 562 ± 6 Ma during the Neoproterozoic regional metamorphism. The Tonian-Cryogenian signal preserved in the Highland-Vijayan tectonic mixed zone can also be found in the alkaline intrusion hosted by the Namuno Terrane and the Lurio Belt in Mozambique. This indicates a relationship between the Vijayan granitic gneisses and the Lurio foreland metagranitic basement, while the Namuno Terrane and the Lurio Belt are correlated with the Highland-Vijayan tectonic mixed zone. The ages and the isotope signatures of these granitic bodies further suggest a genetic relationship of these granitic bodies with various magmatic intrusions in East Antarctica.
  •  
22.
  • Nikogosian, I.K., et al. (author)
  • Multiple subduction imprints in the mantle below Italy detected in a single lava flow.
  • 2016
  • In: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X .- 1385-013X. ; 449, s. 12-19
  • Journal article (peer-reviewed)abstract
    • Post-collisional magmatism reflects the regional subduction history prior to collision but the link between the two is complex and often poorly understood. The collision of continents along a convergent plate boundary commonly marks the onset of a variety of transitional geodynamic processes. Typical responses include delamination of subducting lithosphere, crustal thickening in the overriding plate, slab detachment and asthenospheric upwelling, or the complete termination of convergence. A prominent example is the Western–Central Mediterranean, where the ongoing slow convergence of Africa and Europe (Eurasia) has been accommodated by a variety of spreading and subduction systems that dispersed remnants of subducted lithosphere into the mantle, creating a compositionally wide spectrum of magmatism. Using lead isotope compositions of a set of melt inclusions in magmatic olivine crystals we detect exceptional heterogeneity in the mantle domain below Central Italy, which we attribute to the presence of continental material, introduced initially by Alpine and subsequently by Apennine subduction. We show that superimposed subduction imprints of a mantle source can be tapped during a melting episode millions of years later, and are recorded in a single lava flow.
  •  
23.
  • Pidgeon, R. T., et al. (author)
  • The accumulation of non-formula elements in zircons during weathering : Ancient zircons from the Jack Hills, Western Australia
  • 2019
  • In: Chemical Geology. - 0009-2541 .- 1872-6836. ; 530
  • Journal article (peer-reviewed)abstract
    • In this contribution we describe the influx of non-formula elements (Fe, Ca, Al, Y, U and Th) into fractures and selected zone lamellae in zircons from Jack Hills during recent weathering and discuss the effects of this on overlapping SIMS U-Th-Pb and oxygen isotope analyses. Previous research has recognised the importance of fractures in the generation of anomalous U-Th-Pb and oxygen isotope systems. In this report we show that besides fractures specific zones in euhedrally zoned zircon can act as pathways for the influx of weathering solutions and contain a similar range of trace element materials as do the fractures. Whereas zero-age discordant U-Pb systems of Jack Hills zircons have been explained by many authors in terms of Pb loss, present results confirm conclusions of our previous study that the main discordance mechanism of Jack Hills zircons is U-Th gain, due to overlap of SIMS analyses with mineralized fractures and zone lamellae with excess weathering-fluid-deposited U and Th. We explain the anomalously light and heavy oxygen isotopes and significant OH in SIMS analyses that overlap fractures and mineralized zones as due to the presence in the fractures of Ca, Fe, Al oxides and hydroxides with complexly fractionated oxygen isotopic systems. There is a suggestion in some of the elemental maps that there has been minor dispersion of trace elements away from fractures. But SIMS U-Th-Pb and oxygen isotope analyses on parts of the zircon away from fractures and mineralized zones show no evidence of interaction with weathering-fluid, indicating that penetration of weathering fluids into the body of the zircon at the location of the SIMS spots has not occurred. Results of this study have implications for other SIMS U-Th-Pb and oxygen isotope studies of zircons from rocks that have been subjected to weathering and also for early TIMS U-Pb measurements of bulk zircon samples that show zero Ma U-Pb discordance.
  •  
24.
  • Pointon, Michael A., et al. (author)
  • A Multi-proxy Provenance Study of Late Carboniferous to Middle Jurassic Sandstones in the Eastern Sverdrup Basin and Its Bearing on Arctic Palaeogeographic Reconstructions
  • 2022
  • In: Geosciences. - : MDPI AG. - 2076-3263. ; 13:1, s. 10-10
  • Journal article (peer-reviewed)abstract
    • A multi-proxy provenance study of Late Carboniferous to Middle Jurassic sandstones from the eastern Sverdrup Basin was undertaken employing optical petrography and heavy mineral analysis, chemical analysis of apatite, garnet and rutile grains, as well as detrital zircon U–Pb geochronology and Hf isotope analysis. Late Carboniferous to Middle Jurassic strata on the southern basin margin are inferred as being predominantly reworked from Silurian to Devonian strata within the adjacent Franklinian Basin succession. Higher-grade metamorphic detritus appeared during Middle to Late Triassic times and indicates exhumation and erosion of lower (Neoproterozoic to Cambrian) levels within the Franklinian Basin succession and/or a direct detrital input from the Canadian-Greenland Shield. The provenance of northern-derived sediments is more enigmatic owing to the subsequent opening of the Arctic Ocean. Northern-derived Middle Permian to Early Triassic sediments were likely derived from proximal areas of the Chukotkan part of the Arctic Alaska-Chukotka microplate. Late Triassic northern-derived sediments have different detrital zircon U–Pb age spectra from Middle Permian to Early Triassic ones and were likely derived from the Uralian orogenic belt and/or the Arctic Uralides. The loss of this sand input during latest Triassic times is interpreted to reflect drainage reorganisation farther upstream on the Barents Shelf. Middle Jurassic sands in the northern and axial parts of the basin were largely reworked from local northern-derived Late Triassic strata. This may have been facilitated by rift flank uplift of the northern basin margin in response to rifting in the adjacent proto-Amerasia Basin.
  •  
25.
  • Riley, T., et al. (author)
  • Evolution of the Antarctic Peninsula lithosphere: Evidence from Mesozoic mafic rocks.
  • 2016
  • In: Lithos. - : Elsevier BV. - 0024-4937 .- 1872-6143. ; 244, s. 59-73
  • Journal article (peer-reviewed)abstract
    • New geochronology from a thick (> 800 m) basaltic succession along the eastern margin of the Antarctic Peninsula confirm a Middle Jurassic age (178 ± 1 Ma). This marginally postdates the adjacent Ferrar large igneous province of the Transantarctic Mountains and predates the extensive silicic volcanism of the Mapple Formation (~ 170 Ma) of the Antarctic Peninsula. The geochemistry of other rare, but broadly contemporaneous, basaltic successions of the Antarctic Peninsula, along with Cretaceous-age mafic dykes, are used to interpret the influences of lithospheric and asthenospheric mantle sources during the Mesozoic. Two significant high magmatic addition rate events occurred along the Antarctic Peninsula continental margin at 170 and 110 Ma and can be correlated to events along the South American Cordillera. These ‘flare-up’ events are characterised by extensive silicic (mostly ignimbrite) volcanism of the Chon Aike Province (V2 event: 170 Ma) and significant granitoid batholith emplacement of the Lassiter Coast intrusive suite (110 Ma). The 170 Ma event is exposed across large parts of the northern Antarctic Peninsula, whilst the 110 Ma event is more widespread across the southern Antarctic Peninsula. The basaltic volcanism described here precedes the ‘flare-up’ event at 170 Ma and has geochemical characteristics that indicate a thickened lithosphere prevailed. A major dyke swarm that followed the 170 Ma event indicates that extensive lithospheric thinning had occurred, which allowed the ascent of depleted mafic melts. The thinning was the direct result of widespread lower crustal/upper lithospheric melting associated with the silicic volcanism. In the southern Antarctic Peninsula, the lithosphere remained over thickened until the emplacement of the major batholiths of the Lassiter Coast intrusive suite at 110 Ma and was then immediately followed by the emplacement of more asthenosphere-like melts indicating extensive lithospheric thinning.
  •  
26.
  • Riley, T.R., et al. (author)
  • A revised geochronology of Thurston Island, West Antarctica, and correlations along the proto-Pacific margin of Gondwana.
  • 2017
  • In: Antarctic Science. - 0954-1020 .- 1365-2079. ; 29, s. 47-60
  • Journal article (peer-reviewed)abstract
    • The continental margin of Gondwana preserves a record of long-lived magmatism from the Andean Cordillera to Australia. The crustal blocks of West Antarctica form part of this margin, with Palaeozoic–Mesozoic magmatism particularly well preserved in the Antarctic Peninsula and Marie Byrd Land. Magmatic events on the intervening Thurston Island crustal block are poorly defined, which has hindered accurate correlations along the margin. Six samples are dated here using U-Pb geochronology and cover the geological history on Thurston Island. The basement gneisses from Morgan Inlet have a protolith age of 349±2 Ma and correlate closely with the Devonian–Carboniferous magmatism of Marie Byrd Land and New Zealand. Triassic (240–220 Ma) magmatism is identified at two sites on Thurston Island, with Hf isotopes indicating magma extraction from Mesoproterozoic-age lower crust. Several sites on Thurston Island preserve rhyolitic tuffs that have been dated at 182 Ma and are likely to correlate with the successions in the Antarctic Peninsula, particularly given the pre-break-up position of the Thurston Island crustal block. Silicic volcanism was widespread in Patagonia and the Antarctic Peninsula at ~ 183 Ma forming the extensive Chon Aike Province. The most extensive episode of magmatism along the active margin took place during the mid-Cretaceous. This Cordillera ‘flare-up’ event of the Gondwana margin is also developed on Thurston Island with granitoid magmatism dated in the interval 110–100 Ma.
  •  
27.
  • Riley, T.R., et al. (author)
  • Early Jurassic magmatism on the Antarctic Peninsula and potential correlation with the Subcordilleran plutonic belt of Patagonia.
  • 2017
  • In: Journal of the Geological Society. - : Geological Society of London. - 0016-7649 .- 2041-479X. ; 174, s. 365-376
  • Journal article (peer-reviewed)abstract
    • Early Jurassic silicic volcanic rocks of the Chon Aike Province (V1: 187 – 182 Ma) are 30 recognised from many localities in the southern Antarctic Peninsula and northeast Patagonia and are 31 essentially coeval with the extensive Karoo (182 Ma) and Ferrar (183 Ma) large igneous provinces of 32 pre-breakup Gondwana. Until recently, plutonic rocks of this age were considered either rare or 33 absent from the Antarctic Peninsula batholith, which was thought to have been mainly constructed 34 during the Middle Jurassic and the mid-Cretaceous. New U-Pb zircon geochronology from the 35 Antarctic Peninsula and recently published U-Pb ages from elsewhere on the Peninsula and 36 Patagonia are used to demonstrate the more widespread nature of Early Jurassic plutonism. Eight 37 samples are dated here from the central and southern Antarctic Peninsula. They are all moderately 38 to strongly foliated granitoids (tonalite, granite, granodiorite) and locally represent the crystalline 39 basement. They yield ages in the range 188 – 181 Ma, and overlap with published ages of 185 – 180 40 Ma from granitoids from elsewhere on the Antarctic Peninsula and from the Subcordilleran plutonic 41 belt of Patagonia (185 – 181 Ma). Whilst Early Jurassic plutons of the Subcordilleran plutonic belt of 42 Patagonia are directly related to subduction processes along the proto-Pacific margin of Gondwana, 43 coeval volcanic rocks of the Chon Aike Province are interpreted to be directly associated with 44 extension and plume activity during the initial stages of Gondwana break-up. This indicates that 45 subduction was ongoing when Chon Aike Province volcanism started. The Early Jurassic plutonism on 46 the Antarctic Peninsula is transitional between subduction-related and break-up related 47 magamatism.
  •  
28.
  • Riley, T. R., et al. (author)
  • U-Pb zircon geochronology from Haag Nunataks, Coats Land and Shackleton Range (Antarctica) : Constraining the extent of juvenile Late Mesoproterozoic arc terranes
  • 2020
  • In: Precambrian Research. - : Elsevier BV. - 0301-9268 .- 1872-7433. ; 340
  • Journal article (peer-reviewed)abstract
    • Understanding the accretionary stages of Rodinia evolution and the arrangement of cratons and arc terranes is dependent upon high-precision geochronology from key piercing points of Mesoproterozoic rocks. U-Pb zircon dating is presented here from the Mesoproterozoic Haag Nunataks gneiss complex of West Antarctica where the dominant granodiorite protolith was emplaced at 1238 ± 4 Ma, aplite/pegmatite sheets were intruded at 1064 ± 4 Ma and the final intrusive phase of microgranite sheets were emplaced at 1056 ± 8 Ma. A separate magmatic event at ~1170 Ma is recorded as inherited zircons in the later stage intrusions. Based on field relationships, the main phase of deformation at Haag Nunataks is thought to have developed prior to the emplacement of the microgranite sheet at ~1056 Ma but after the ~1064 Ma aplite/pegmatite intrusive phase. Potentially correlative units from the Shackleton Range and Coats Land of East Antarctica are also dated to test supposed correlations with arc terranes and crustal blocks at the margins of Laurentia and the proto-Kalahari craton. An ice-transported granite pegmatite sample recovered from the Brunt Ice Shelf is used as a partial proxy for unexposed rocks of the ice-covered Coats Land block and has been dated at ~1100 Ma. A diorite gneiss from the Shackleton Range was also analysed as it forms part of a magnetic domain shared with the Haag Nunataks crustal block. Core zircon ages of ~2470 Ma were determined, and the age of migmatisation is interpreted at ~1740 Ma and rules out any potential correlation with the Haag Nunataks gneiss complex. The magmatic precursors of the Haag Nunataks orthogneisses were emplaced in a juvenile arc setting. We argue that this arc was located in the Natal Embayment region, contiguous with the Namaqua-Natal-Maud belt of arc terranes typified by enhanced magmatism at ~1240 Ma and ~1170 Ma not associated with any significant deformation events. The later magmatic events at Haag Nunataks at ~1060 Ma are more closely associated with collision of Laurentia with the proto-Kalahari craton and the associated deformation is correlated with the Ottawan phase of the Grenville orogeny.
  •  
29.
  • Roszjar, J., et al. (author)
  • Prolonged magmatism on 4 Vesta inferred from Hf–W analyses of eucrite zircon
  • 2016
  • In: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X .- 1385-013X. ; 452, s. 216-226
  • Journal article (peer-reviewed)abstract
    • The asteroid 4 Vesta is the second most massive planetesimal in the Solar System and a rare example of a planetary object that possibly can be linked to a specific group of differentiated meteorites, the howardite–eucrite–diogenite suite. The 182Hf–182W chronometry of individual zircon grains from six basaltic eucrites revealed distinct growth episodes ranging from 4532 −11/+6 Ma−11/+6 Ma to 4565.0±0.9 Ma4565.0±0.9 Ma and constrains the early thermal history of 4 Vesta, indicating that its mantle generated basaltic melts for at least 35 million years (Myr). Initially, the energy needed for melting was provided by decay of short-lived isotopes, mostly 26Al. The long duration of magmatism despite the short lifetime of 26Al implies that the asteroid must have accreted within the first ∼4 Myr of Solar System formation, similar to the formation of iron meteorite parent bodies, and that its interior must have been thermally well insulated by an early-formed crust that prevented heat loss.
  •  
30.
  • Spencer, C.J., et al. (author)
  • Generation and preservation of continental crust in the Grenville Orogeny
  • 2015
  • In: Geoscience Frontiers. - : Elsevier BV. - 1674-9871. ; 6, s. 357-372
  • Journal article (peer-reviewed)abstract
    • Detrital zircons from modern sediments display an episodic temporal distribution of U-Pb crystallization ages forming a series of ‘peaks’ and ‘troughs’. The peaks are interpreted to represent either periods of enhanced generation of granitic magma perhaps associated with mantle overturn and superplume events, or preferential preservation of continental crust during global collisional orogenesis. The close association of those peaks with the assembly of supercontinents implies a causal relationship between collisional orogenesis and the presence of zircon age peaks. Here these two end-member models (episodic periodicity of increased magmatism versus selective preservation during collisional orogenesis) are assessed using U-Pb, Hf, and O analysis of detrital zircons from sedimentary successions deposited during the ∼1.3–1.1 Ga accretionary, ∼1.1–0.9 Ga collisional, and < 0.9 Ga extensional collapse phases of the Grenville orogenic cycle in Labrador and Scotland. The pre-collisional, accretionary stage provides a baseline of continental crust present prior to orogenesis and is dominated by Archean and Paleoproterozoic age peaks associated with pre-1300 Ma Laurentian geology. Strata deposited during the Grenville Orogeny display similar Archean and Paleoproterozoic detrital populations along with a series of broad muted peaks from ∼1500 to 1100 Ma. However, post-collisional sedimentary successions display a dominant age peak between 1085 and 985 Ma, similar to that observed in modern North American river sediments.Zircons within the post-orogenic sedimentary successions have progressively lower ɛHf and higher δ18O values from ∼1800 to ∼1200 Ma whereupon they have higher ɛHf and δ18O within the dominant 1085–985 Ma age peak. Furthermore, the Lu-Hf isotopic profile of the Grenville-related age peak is consistent with significant assimilation and contamination by older crustal material. The timing of this dominant age peak coincides with the peak of metamorphism and magmatism associated with the Grenville Orogeny, which is a typical collisional orogenic belt. The change from broad muted age peaks in the syn-orogenic strata to a single peak in the post-orogenic sedimentary successions and in the modern river sediments implies a significant shift in provenance following continental collision. This temporal change in provenance highlights that the source(s), from which detrital zircons within syn-orogenic strata were derived, was no longer available during the later stages of the accretionary and collisional stages of the orogenic cycle. This may reflect some combination of tectonic burial, erosion, or possibly recycling into the mantle by tectonic erosion of the source(s). During continental collision, the incorporated continental crust is isolated from crustal recycling processes operative at subduction margins. This tectonic isolation combined with sedimentary recycling likely controls the presence of the isotopic signature associated with the Grenville Orogeny in the modern Mississippi and Appalachian river sediments. These results imply that zircon age peaks, which developed in conjunction with supercontinents, are the product of selective crustal preservation resulting from collisional orogenesis.
  •  
31.
  • Ward, D., et al. (author)
  • Trace element inventory of meteoritic Ca-phosphates.
  • 2017
  • In: American Mineralogist. - : Mineralogical Society of America. - 0003-004X .- 1945-3027. ; 102, s. 1856-1880
  • Journal article (peer-reviewed)abstract
    • Most extraterrestrial samples feature the two accessory Ca-phosphates (apatite-group minerals and merrillite), which are important carrier phases of the rare earth elements (REE). The trace-element concentrations (REE, Sc, Ti, V, Cr, Mn, Co, As, Rb, Sr, Y, Zr, Nb, Ba, Hf, Ta, Pb, Th, and U) of selected grains were analyzed by LA-ICP-MS and/or SIMS (REE only). This systematic investigation includes 99 apatite and 149 merrillite analyses from meteorites deriving from various asteroidal bodies including 1 carbonaceous chondrite, 8 ordinary chondrites, 3 acapulcoites, 1 winonaite, 2 eucrites, 5 shergottites, 1 ureilitic trachyandesite, 2 mesosiderites, and 1 silicate-bearing IAB iron meteorite.Although Ca-phosphates predominantly form in metamorphic and/or metasomatic reactions, some are of igneous origin. As late-stage phases that often incorporate the vast majority of their host’s bulk REE budget, the investigated Ca-phosphates have REE enrichments of up to two orders of magnitude compared to the host rock’s bulk concentrations. Within a single sample, each phosphate species displays a uniform REE-pattern, and variations are mainly restricted to their enrichment, therefore indicating similar formation conditions. Exceptions are brecciated samples, i.e., the Adzhi-Bogdo (LL3-6) ordinary chondrite. Despite this uniformity within single samples, distinct meteorite groups do not necessarily have unique REE-patterns. Four basic shapes dominate the REE patterns of meteoritic Ca-phosphates: (1) flat patterns, smoothly decreasing from La-Lu with prominent negative Eu anomalies (acapulcoites, eucrites, apatite from the winonaite and the ureilitic trachyandesite, merrillite from ordinary chondrites); (2) unfractionated patterns, with only minor or no anomalies (mesosiderites, enriched shergottites, IAB-iron meteorite); (3) LREE-enriched patterns, with either positive or slightly negative Eu anomalies (chondritic apatite); and (4) strongly LREE-depleted patterns, with negative Eu anomalies (depleted shergottites). The patterns do not correlate with the grade of metamorphism (petrologic type), specific adjacent mineral assemblages or with Ca-phosphate grain size. Neither the proportions of different REE, nor particular REE patterns themselves are universally correlated to a specific formation mechanism yet Eu (i.e., magnitude of the Eu anomaly) is a sensitive indicator to evaluate the timing of plagioclase and phosphate crystallization. Based on our data, U and Th abundances in apatite increase (almost linearly) with the grade of metamorphism, as well as with the differentiation of their host rock.
  •  
32.
  • Westhues, A., et al. (author)
  • Evidence for hydrothermal alteration and source regions for the Kiruna iron oxide apatite ore from zircon Hf and O isotopes.
  • 2017
  • In: Geology. ; 45, s. 571-574
  • Journal article (peer-reviewed)abstract
    • Zircon grains from the Kiruna iron oxide–apatite (IOA) ore bodies in northern Sweden are distinct in their hafnium and oxygen isotopic ratios compared to zircon grains from adjacent metavolcanic host rocks and related intrusions. Here, we combine these two isotopic systems on previously dated zircon grains to improve our understanding of these ore deposits with a long-debated origin. Contrasting theories for the formation of the Kiruna iron ores suggest either (1) emplacement through immiscible silicate–iron oxide melts or (2) transportation and deposition of iron by hydrothermal fluids. Zircon from the metavolcanic host rocks and intrusions have oxygen isotopic ratios (δ18O ∼3‰) that lie below typical magmatic compositions, which is evidence that roof rocks altered by meteoric water were digested into the magma. In contrast, the ores show an influence of a fluid that is higher in δ18O (∼7‰). Based on these findings, we propose the involvement of episodic magmatic-hydrothermal fluids in the ore genesis of the Kiruna iron ore deposits: (1) the first episode related to a deep-seated magmatism and to regional-scale metasomatic alteration, and (2) a later fluid event related to shallow intrusions and responsible for the ore formation. Distinct differences in the Hf isotopic ratios for host rocks and intrusions (εHfi = −6 to −10, Archean crust) and ore (εHfi = −5 to +3, depleted mantle) further allow us to screen possible fluid sources for their involvement in the ore process.
  •  
33.
  • White, L. F., et al. (author)
  • Evidence of extensive lunar crust formation in impact melt sheets 4,330 Myr ago
  • 2020
  • In: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 4:10, s. 974-978
  • Journal article (peer-reviewed)abstract
    • Accurately constraining the formation and evolution of the lunar magnesian suite is key to understanding the earliest periods of magmatic crustal building that followed accretion and primordial differentiation of the Moon. However, the origin and evolution of these unique rocks is highly debated. Here, we report on the microstructural characterization of a large (~250-μm) baddeleyite (monoclinic-ZrO2) grain in Apollo troctolite 76535 that preserves quantifiable crystallographic relationships indicative of reversion from a precursor cubic-ZrO2 phase. This observation places important constraints on the formation temperature of the grain (>2,300 °C), which endogenic processes alone fail to reconcile. We conclude that the troctolite crystallized directly from a large, differentiated impact melt sheet 4,328 ± 8 Myr ago. These results suggest that impact bombardment would have played a critical role in the evolution of the earliest planetary crusts.
  •  
34.
  • A. Marques, Ana F., et al. (author)
  • The Seven Sisters Hydrothermal System : First Record of Shallow Hybrid Mineralization Hosted in Mafic Volcaniclasts on the Arctic Mid-Ocean Ridge
  • 2020
  • In: Minerals. - : MDPI AG. - 2075-163X.
  • Other publication (other academic/artistic)abstract
    • We document the discovery of an active, shallow, seafloor hydrothermal system (known as the Seven Sisters Vent Field) hosted in mafic volcaniclasts at a mid-ocean ridge setting. The vent field is located at the southern part of the Arctic mid-ocean ridge where it lies on top of a flat-topped volcano at ~130 m depth. Up to 200 deg C phase-separating fluids vent from summit depressions in the volcano, and from pinnacle-like edifices on top of large hydrothermal mounds. The hydrothermal mineralization at Seven Sisters manifests as a replacement of mafic volcaniclasts, as direct intraclast precipitation from the hydrothermal fluid, and as elemental sulfur deposition within orifices. Barite is ubiquitous, and is sequentially replaced by pyrite, which is the first sulfide to form, followed by Zn-Cu-Pb-Ag bearing sulfides, sulfosalts, and silica. The mineralized rocks at Seven Sisters contain highly anomalous concentrations of ‘epithermal suite’ elements such as Tl, As, Sb and Hg, with secondary alteration assemblages including silica and dickite. Vent fluids have a pH of ~5 and are Ba and metal depleted. Relatively high dissolved Si (~7.6 mmol/L Si) combined with low (0.2–0.4) Fe/Mn suggest high-temperature reactions at ~150 bar. A delta-13C value of -5.4 permil in CO2 dominated fluids denotes magmatic degassing from a relatively undegassed reservoir. Furthermore, low CH4 and H2 (<0.026 mmol/kg and <0.009 mmol/kg, respectively) and 3He/4He of ~8.3 R/Racorr support a MORB-like, sediment-free fluid signature from an upper mantle source. Sulfide and secondary alteration mineralogy, fluid and gas chemistry, as well as delta-34S and 87Sr/86Sr values in barite and pyrite indicate that mineralization at Seven Sisters is sustained by the input of magmatic fluids with minimal seawater contribution. 226Ra/Ba radiometric dating of the barite suggests that this hydrothermal system has been active for at least 4670 +/- 60 yr.
  •  
35.
  • Bingen, B., et al. (author)
  • Geochronology of the Palaeoproterozoic Kautokeino Greenstone Belt, Finnmark, Norway: Tectonic implications in a Fennoscandia context.
  • 2015
  • In: Norwegian Journal of Geology. - : Geological Society of Norway. - 2387-5844 .- 2387-5852. ; 95, s. 365-396
  • Journal article (peer-reviewed)abstract
    • Zircon U–Pb geochronological data in 18 samples from Finnmarksvidda and one sample from the Repparfjord Tectonic Window, northern Norway, constrain the evolution of the Palaeoproterozoic Kautokeino Greenstone Belt and neighbouring units in a Fennoscandia context. The Jergul Complex is an Archaean cratonic block of Karelian affinity, made of variably gneissic, tonalite–trondhjemite–granodiorite–granite plutonic rocks formed between 2975 ± 10 and 2776 ± 6 Ma. It is associated with the Archaean Goldenvárri greenstone–schist formation. At the base of the Kautokeino Greenstone Belt, the Masi Formation is a typical Jatulian quartzite, hosting a Haaskalehto-type, albite–magnetite-rich, mafic sill dated at 2220 ± 7 Ma. The Likčá and Čáskejas formations represent the main event of basaltic magmatism. A synvolcanic metagabbro dates this magmatism at 2137 ± 5 Ma. The geochemical and Nd isotopic signature of the Čáskejas Formation (eNd = +2.2 ± 1.7) is remarkably similar to coeval dykes intruding the Archaean Karelian Craton in Finland and Russia (eNd = +2.5 ± 1.0). The Čáskejas Formation can be correlated with the Kvenvik Formation in the Alta–Kvænangen Tectonic Window. Two large granite plutons yield ages of 1888 ± 7 and 1865 ± 8 Ma, and provide a maximum age for shearing along two prominent NNW–SSE-oriented shear zones recording Svecokarelian transpression. The Bidjovagge Au–Cu deposit formed around 1886 to 1837 Ma and is also related to this NNW–SSE-oriented shear system. The Ráiseatnu Complex is mainly composed of granitic gneisses formed between 1868 ± 13 and 1828 ± 5 Ma, and containing metasediment rafts and zircon xenocrysts ranging from c. 3100 to 2437 Ma. The Kautokeino Greenstone Belt and Ráiseatnu Complex are interpreted as Palaeoproterozoic, pericontinental, lithospheric domains formed during rifting between Archaean cratonic domains. They accommodated oblique convergence between the Karelian and the Norrbotten Archaean cratons during the Svecokarelian orogeny.
  •  
36.
  • Bingen, B., et al. (author)
  • U-Pb geochronology of the syn-orogenic Knaben molybdenum deposits, Sveconorwegian orogen, Norway
  • 2015
  • In: Geological Magazine. - 0016-7568 .- 1469-5081. ; 152, s. 537-556
  • Journal article (peer-reviewed)abstract
    • Paired isotope dilution – thermal ionization mass spectrometry (ID-TIMS) and secondary ion mass spectrometry (SIMS) zircon U–Pb data elucidate geochronological relations in the historically important Knaben molybdenum mining district, Sveconorwegian Orogen, south Norway. This polyphase district provided c. 8.5 Mt of ore with a grade of 0.2%. It consists of mineralized quartz veins, silica-rich gneiss, pegmatites and aplites associated with a heterogeneous, locally sulphide-bearing, amphibolites facies gneiss called Knaben Gneiss, and hosted in a regional-scale monotonous, commonly weakly foliated, granitic gneiss. An augen gneiss at the Knaben I deposit yields a 1257±6 Ma magmatic zircon age, dating the pre-Sveconorwegian protolith of the Knaben Gneiss. Mineralized and non-mineralized granitic gneiss samples at the Knaben II and Kvina deposits contain some 1488–1164 Ma inherited zircon and yield consistent intrusion ages of 1032±4, 1034±6 and 1036±6 Ma. This age links magmatism in the district to the regional 1050–1020 Ma Sirdal I-type granite suite, corresponding to voluminous crustal melting during the Sveconorwegian orogeny. A high-U, low-Th/U zircon rim is present in all samples. It defines several age clusters between 1039±6 and 1009±7 Ma, peaking at c. 1016 Ma and overlapping with a monazite age of 1013±5 Ma. The rim records protracted hydrothermal activity, which started during the main magmatic event and outlasted it. This process was coeval with regional high-grade Sveconorwegian metamorphism. Molybdenum deposition probably started during this event when silica-rich mineralizing fluids or hydrous magmas were released from granite magma batches. An analogy between the Knaben district and shallow, short-lived porphyry Mo deposits is inappropriate.
  •  
37.
  •  
38.
  • Burton-Johnson, A., et al. (author)
  • A Triassic to Jurassic arc in north Borneo : Geochronology, geochemistry, and genesis of the Segama Valley Felsic Intrusions and the Sabah ophiolite
  • 2020
  • In: Gondwana Research. - : Elsevier BV. - 1342-937X .- 1878-0571. ; 84, s. 229-244
  • Journal article (peer-reviewed)abstract
    • New field, geochemical, and geochronological data from the Segama Valley Felsic Intrusions (SVFI) of Sabah, north Borneo, shows them to be arc-derived tonalites; not windows or partial melts of a crystalline basement beneath Sabah. U-Pb zircon ages date emplacement in the Triassic and Jurassic: 241.1 ± 2.0 Ma, 250.7 ± 1.9 Ma, 178.7 ± 2.4 Ma, and 178.6 ± 1.3 Ma; contemporaneous with peaks in magmatism and detrital zircons in Sarawak and west Kalimantan (west Borneo). Isotopic data for Sr, Nd, and Pb from whole rocks, and for Hf and O from zircon all show mantle and/or MORB affinities indicating a mantle-derived origin. Enrichment of fluid mobile trace elements and trace element ratios indicate that the most likely setting for this is in a continuation of the Sundaland continental arc. There is no evidence in the field, geochemical, or zircon U-Pb data for continental basement in the Segama Valley region. The intrusive nature of the Segama Valley tonalites constrains the emplacement age of their supra-subduction zone host rocks to at least the Triassic. This new data expands the Triassic and Jurassic extent of Borneo and the Sundaland arc, and challenges models of Borneo's development predominantly through allochthonous terrane accretion in the Cretaceous. Instead, we propose a model of protracted autochthonous growth through supra-subduction zone crustal extension and associated magmatism.
  •  
39.
  • Cabral, R.A., et al. (author)
  • Volatile cycling of H2O, CO2, F, and Cl in the HIMU mantle: A new window provided by melt inclusions from oceanic hotspot lavas at Mangaia, Cook Islands.
  • 2014
  • In: Geochemistry Geophysics Geosystems. - 1525-2027. ; 15, s. 4445-4467
  • Journal article (peer-reviewed)abstract
    • Mangaia hosts the most radiogenic Pb-isotopic compositions observed in ocean island basalts and represents the HIMU (high µ = 238U/204Pb) mantle end-member, thought to result from recycled oceanic crust. Complete geochemical characterization of the HIMU mantle end-member has been inhibited due to a lack of deep submarine glass samples from HIMU localities. We homogenized olivine-hosted melt inclusions separated from Mangaia lavas and the resulting glassy inclusions made possible the first volatile abundances to be obtained from the HIMU mantle end-member. We also report major and trace element abundances and Pb-isotopic ratios on the inclusions, which have HIMU isotopic fingerprints. We evaluate the samples for processes that could modify the volatile and trace element abundances postmantle melting, including diffusive Fe and H2O loss, degassing, and assimilation. H2O/Ce ratios vary from 119 to 245 in the most pristine Mangaia inclusions; excluding an inclusion that shows evidence for assimilation, the primary magmatic H2O/Ce ratios vary up to ∼200, and are consistent with significant dehydration of oceanic crust during subduction and long-term storage in the mantle. CO2 concentrations range up to 2346 ppm CO2 in the inclusions. Relatively high CO2 in the inclusions, combined with previous observations of carbonate blebs in other Mangaia melt inclusions, highlight the importance of CO2 for the generation of the HIMU mantle. F/Nd ratios in the inclusions (30 ± 9; 2σ standard deviation) are higher than the canonical ratio observed in oceanic lavas, and Cl/K ratios (0.079 ± 0.028) fall in the range of pristine mantle (0.02–0.08).
  •  
40.
  • Condon, Daniel J., et al. (author)
  • U-Th-Pb Geochronology
  • 2021. - 2nd
  • In: Encylopedia of Geology, 2nd Edition. - : Elsevier. - 9780081029091 ; , s. 26-46
  • Book chapter (peer-reviewed)
  •  
41.
  • Dunk, M., et al. (author)
  • Evidence for a late Cambrian juvenile arc and a buried suture within the Laurentian Caledonides of Scotland : Comparisons with hyperextended Iapetan margins in the Appalachian Mountains (North America) and Norway
  • 2019
  • In: Geology. - 0091-7613 .- 1943-2682. ; 47:8, s. 734-738
  • Journal article (peer-reviewed)abstract
    • Uranium-lead (U-Pb) zircon dating establishes a late Cambrian (Drumian) protolith age of 503 ± 2 Ma for a trondhjemitic gneiss of the calc-alkaline Strathy Complex, northern Scottish Caledonides. Positive εHf and εNd values from trondhjemitic gneisses and co-magmatic amphibolites, respectively, and an absence of any inheritance in zircon populations support published geochemistry that indicates a juvenile origin distal from Laurentia. In order to account for its present location within a stack of Laurentia-derived thrust sheets, we interpret the complex as allochthonous and located along a buried suture. We propose that a microcontinental ribbon was detached from Laurentia during late Neoproterozoic to Cambrian rifting; the intervening oceanic tract closed by subduction during the late Cambrian and formed a juvenile arc, the protolith of the Strathy Complex. The microcontinental ribbon was reattached to Laurentia during the Grampian orogeny, which transported the Strathy Complex as a tectonic slice within a nappe stack. Peak metamorphic conditions for the Strathy Complex arc (650–700 °C, 0.6–0.75 GPa) are intermediate in pressure between those published previously for Grampian mineral assemblages in structurally overlying low-pressure migmatites (670–750 °C, <0.4 GPa) that we deduce to have been derived from an adjacent backarc basin, and structurally underlying upper amphibolite rocks (650–700 °C, 1.1–1.2 GPa) that we interpret to represent the partially subducted Laurentian margin. This scenario compares with that of the northern Appalachian Mountains and Norway where microcontinental blocks are interpreted to have their origins in detachment from passive margins of the Iapetus Ocean during Cambrian rifting and to have been re-amalgamated during Caledonian orogenesis.
  •  
42.
  • Dunkley, Daniel J., et al. (author)
  • Two Neoarchean tectonothermal events on the western edge of the North Atlantic Craton, as revealed by SIMS dating of the Saglek Block, Nain Province, Labrador
  • 2020
  • In: Journal of the Geological Society. - : Geological Society of London. - 0016-7649 .- 2041-479X. ; 177:1
  • Journal article (peer-reviewed)abstract
    • The Saglek Block forms the northern part of the Nain Province and underwent widespread metamorphism at c. 2.7 Ga, producing the dominant gneissosity and intercalation of supracrustal sequences. Zircon dating of gneiss samples collected along 80 km of the Labrador coast from Ramah Bay in the north to Hebron Fjord in the south confirms the widespread extent of high-grade metamorphism between 2750 and 2700 Ma. In addition, a distinct event between 2550 and 2510 Ma produced felsic melt with peritectic garnet in metavolcanic gneiss and granoblastic recrystallization in mafic granulite. Ductile deformation of granite emplaced at c. 2550 Ma indicates that this later event involved a degree of tectonism during high-T metamorphism. Such tectonism may be related to a hypothesized post-2.7 Ga juxtaposition of the predominantly Eoarchean Saglek Block against the Mesoarchean Hopedale Block, along a north–south boundary that extends from the coast near Nain to offshore of Saglek Bay. Evidence of reworking of c. 2.7 Ga gneisses by c. 2.5 Ga tectonothermal activity has been found elsewhere on the margins of the North Atlantic Craton, of which the Nain Province represents the western margin. In particular, a recent suggestion that c. 2.5 Ga metamorphic ages along the northern margin of the North Atlantic Craton in SW Greenland may record the final assembly of the craton could also apply to the western margin as represented by the rocks of the Nain Province.Supplementary material: Plots and geochemical data are available at https://doi.org/10.6084/m9.figshare.c.4567934
  •  
43.
  • Eichner, Meri, et al. (author)
  • Chemical microenvironments and single-cell carbon and nitrogen uptake in field-collected colonies of Trichodesmium under different pCO2
  • 2017
  • In: ISME Journal. - : Springer Science and Business Media LLC. - 1751-7362 .- 1751-7370. ; 11, s. 1305-1317
  • Journal article (peer-reviewed)abstract
    • © 2017 The Author(s)Gradients of oxygen (O2) and pH, as well as small-scale fluxes of carbon (C), nitrogen (N) and O2 were investigated under different partial pressures of carbon dioxide (pCO2) in field-collected colonies of the marine dinitrogen (N2)-fixing cyanobacterium Trichodesmium. Microsensor measurements indicated that cells within colonies experienced large fluctuations in O2, pH and CO2 concentrations over a day–night cycle. O2 concentrations varied with light intensity and time of day, yet colonies exposed to light were supersaturated with O2 (up to ~200%) throughout the light period and anoxia was not detected. Alternating between light and dark conditions caused a variation in pH levels by on average 0.5 units (equivalent to 15nmoll-1 proton concentration). Single-cell analyses of C and N assimilation using secondary ion mass spectrometry (SIMS; large geometry SIMS and nanoscale SIMS) revealed high variability in metabolic activity of single cells and trichomes of Trichodesmium, and indicated transfer of C and N to colony-associated non-photosynthetic bacteria. Neither O2 fluxes nor C fixation by Trichodesmium were significantly influenced by short-term incubations under different pCO2 levels, whereas N2 fixation increased with increasing pCO2. The large range of metabolic rates observed at the single-cell level may reflect a response by colony-forming microbial populations to highly variable microenvironments.The ISME Journal advance online publication, 11 April 2017; doi:10.1038/ismej.2017.15.
  •  
44.
  • Fritschle, Tobias, et al. (author)
  • Peri-Gondwanan Ordovician arc magmatism in southeastern Ireland and the Isle of Man : Constraints on the timing of Caledonian deformation in Ganderia
  • 2018
  • In: GSA Bulletin. ; 130:11-12
  • Journal article (peer-reviewed)abstract
    • The timing of and tectonic controls on Ordovician magmatism and deformation within accreted terranes are key elements in reconstructing the generation of the Caledonian-Appalachian orogen. This paper addresses the topic through integrated geochronological, structural, and multi-isotope geochemical investigation of magmatic arc–related peri-Gondwanan rocks of Ganderian affinity in the Leinster-Lakesman terrane in SE Ireland and the Isle of Man.A basaltic andesite from a previously unrecognized volcaniclastic sequence in the Manx Group at Port-e-Vullen on the Isle of Man yielded an age of 472.7 ± 2.8 Ma (secondary ion mass spectrometry [SIMS] zircon U-Pb), and an arc-related rhyolite from the Avoca volcanic sequence in SE Ireland was dated at 463.6 ± 2.6 Ma. Two granitoids from Graiguenamanagh (SE Ireland) yielded ages of 462.0 ± 2.7 Ma (augen gneiss) and 460.5 ± 3.2 Ma (equigranular granite), whereas the Dhoon granite (Isle of Man) was dated at 457.2 ± 1.2 Ma. Each of the granitic rocks from Graiguenamanagh and Dhoon was previously considered to be of Silurian–Devonian age. In addition, two sheets of the Croghan Kinshelagh granite (SE Ireland) yielded indistinguishable ages of 456.9 ± 2.4 Ma and 455.4 ± 2.8 Ma.Multi-isotopic analyses (SIMS zircon oxygen, laser ablation–multi-collector–inductively coupled plasma–mass spectrometry [LA-MC-ICP-MS] zircon Lu-Hf, whole-rock Sm-Nd) on the rocks of the Leinster-Lakesman terrane suggest a significant source contribution from the Ganderian microcontinent, represented by the Early Ordovician metasedimentary Ribband and Manx Groups.Structural relationships at Graiguenamanagh demonstrate a late Middle Ordovician deformation event at ca. 460 Ma. This deformation appears to be equivalent to the widespread D1 event that affected Early Ordovician rocks in SE Ireland and corresponds to the early structures within the East Carlow deformation zone, previously interpreted as an exclusively Devonian structure. Along strike, the early deformation is spatially associated with serpentinite emplacement. The East Carlow deformation zone is interpreted as an intra-Ganderian suture along which separate fragments of a peri-Gondwanan magmatic arc were juxtaposed at ca. 460 Ma. This deformation represents a Caledonian tectonic event that has not been recognized within Ganderia in the Appalachian sector of the orogen.
  •  
45.
  • Galic, A., et al. (author)
  • Pyrite in a sulfate-poor Paleoarchean basin was derived predominantly from elemental sulfur: evidence from 3.2 Ga sediments in the Barberton Greenstone Belt, Kaapvaal Craton.
  • 2017
  • In: Chemical Geology. - : Elsevier BV. - 0009-2541 .- 1872-6836. ; 449, s. 135-146
  • Journal article (peer-reviewed)abstract
    • Multiple sulfur isotope variability in Archean sedimentary rocks provides constraints on the composition of the Earth’s earliest atmosphere. The magnitude and sign of mass-independent anomalies reflect not only atmospheric processes, but also transformations due to the Archean marine sulfur cycle prior to preservation into sedimentary pyrite. The processes affecting the Archean marine sulfur cycle and the role of microbial or abiotic redox reactions during pyrite formation remain unclear. Here we combine iron (Fe) and multiple sulfur (S) isotope data in individual pyrite grains with petrographic information and a one-dimensional reactive transport model, to investigate the sources of Fe and S in pyrite formed in a Paleoarchean sedimentary basin. Pyrites were selected from mudstones, sandstones and chert obtained from a drill core in the ca. 3.2 Ga Mapepe and Mendon Formations of the Fig Tree and Onverwacht Groups, respectively, in the Barberton Greenstone Belt, Kaapvaal Craton, South Africa. Pyrite textures and δ56Fe distinguish early-diagenetic pyrite formed with pore-water ferrous iron (disseminated grains with average δ56Fepyrite = 0‰) from late-diagenetic pyrite formed through sulfidation of iron oxide minerals (layered and aggregate forms with average δ56Fepyrite = + 1‰). Mass dependent S isotope variability in pyrite was small (δ34Spyrite ranged from − 1.1 to + 3.3‰) with a correspondingly minor spread in Δ33Spyrite (ranging from + 0.3 to + 2.1‰) and Δ36Spyrite (ranging from − 3.08 to + 0.27‰) that indicates a lack of post-depositional re-working with other distinct sulfur sources. Our combined Fe and S isotope data are most readily explained with pyrite sulfide derived from microbial-reworking of solid elemental S. Iron oxide minerals were necessary to buffer sulfide concentrations and provide favorable conditions for microbial sulfur disproportionation to proceed. The lack of a negative Δ33S signal indicates that pyrite from relatively deep marine diagenetic environments only partially records the products of atmospheric photolysis, consistent with low sulfate concentrations in the Paleoarchean ocean.
  •  
46.
  • Gardiner, N.J., et al. (author)
  • Did Oligocene crustal thickening precede basin development in northern Thailand? A geochronological reassessment of Doi Inthanon and Doi Suthep
  • 2016
  • In: Lithos. - : Elsevier BV. - 0024-4937 .- 1872-6143. ; 240-243, s. 69-83
  • Journal article (peer-reviewed)abstract
    • The Doi Inthanon and Doi Suthep metamorphic core complexes in northern Thailand are comprised of amphibolite-grade migmatitic gneisses mantled by lower-grade mylonites and metasedimentary sequences, thought to represent Cordilleran-style core complexes exhumed through the mobilization of a low-angle detachment fault. Previous studies have interpreted two metamorphic events (Late Triassic and Late Cretaceous), followed by ductile extension between the late Eocene and late Oligocene, a model which infers movement on the detachment at ca. 40 Ma, and which culminates in a rapid unroofing of the complexes in the early Miocene. The Chiang Mai Basin, the largest such Cenozoic Basin in the region, lies immediately to the east. Its development is related to the extension observed at Doi Inthanon and Doi Suthep, however it is not definitively dated, and models for its development have difficulty reconciling Miocene cooling ages with Eocene detachment movement. Here we present new in-situ LA-ICP-MS and SIMS U–Pb age data of zircon and monazite grains from gneiss and leucogranite samples taken from Doi Inthanon and Doi Suthep. Our new zircon data exhibit an older age range of 221–210 Ma, with younger ages of ca. 72 Ma, and 32–26 Ma. Our monazite data imply an older age cluster at 83–67 Ma, and a younger age cluster of 34–24 Ma. While our data support the view of Indosinian basement being reworked in the Cretaceous, they also indicate a late Eocene–Oligocene tectonothermal event, resulting in prograde metamorphism and anatexis. We suggest that this later event is related to localized transpressional thickening associated with sinistral movement on the Mae Ping Fault, coupled with thickening at the restraining bend of the Mae Yuan Fault to the immediate west of Doi Inthanon. Further, this upper Oligocene age limit from our zircon and monazite data would imply a younger Miocene constraint on movement of the detachment, which, when combined with the previously recorded Miocene cooling ages, has implications for a model for the onset of extension and subsequent development of the Chiang Mai Basin in the early mid-Miocene.
  •  
47.
  • Ghanem, Hind, et al. (author)
  • 40Ar/39Ar and U-Pb SIMS zircon ages of Ediacaran dikes from the Arabian-Nubian Shield of south Jordan
  • 2020
  • In: Precambrian Research. - : Elsevier BV. - 0301-9268 .- 1872-7433. ; 343
  • Journal article (peer-reviewed)abstract
    • A spectacular feature of the Arabian-Nubian Shield (ANS) is the abundance of well-exposed and extensive Neoproterozoic dike swarms of variable compositions. Most of these dikes are late to post-orogenic with respect to the East African Orogen (EAO) and are unmetamorphosed. We dated a composite dike with latite margins and a rhyolite core (607 ± 6 Ma, U-Pb), a biotite rhyolite dike (600 ± 4 Ma, 40Ar/39Ar age of biotite), an andesite dike (594 ± 3, 40Ar/39Ar age of amphibole) and a dolerite dike (~579 Ma, 40Ar/39Ar whole rock total gas age). We propose that the first three dikes represent one generation that was emplaced at different episodes extending between 607 and 590 Ma. Time and composition equivalent dikes are common in the northern ANS. The dikes crosscut late collisional granitoids and geochemically display a subduction-related character as evidenced by a negative Nb-Ta anomaly. These dikes are absent in the alkali feldspar A-type Humrat Syenogranite dated at 586 ± 5 Ma in Jordan and equivalent rocks in the northern ANS, which are crosscut only by the (~579 Ma) dolerite dikes. The within-plate character of the dolerite dikes is supported by the absence of the Nb-Ta anomaly and high field strength element geochemistry. We propose that the dolerite dikes are a generation, distinct from the ~607–590 Ma dikes, that reflects a change in tectonic regime and represents the last magmatic activity of the Neoproterozoic in the northern ANS. The ages of the dikes dated in this study agree with the published age range of the transitional stage from late orogenic calc-alkaline to extensional alkaline tectono-magmatic setting for the ANS. We propose that the magmatic activity was terminated ~50 m.y. before the age of the Cambrian unconformity at ~530 Ma. Correlation with ages of dikes and magmatic rocks in the northern ANS favors this supposition. The dike geochemistry and geochronology are compatible with a tectonic model that involves mantle lithosphere delamination from below the northern ANS after a significant crust-mantle thickening caused by the EAO, followed by thermal relaxation, subsidence and gradual denudation until the age of the unconformity at ~530 Ma.
  •  
48.
  •  
49.
  • Grema, Haruna M., et al. (author)
  • The Formation of Highly Positive δ34S Values in Late Devonian Mudstones: Microscale Analysis of Pyrite (δ34S) and Barite (δ34S, δ18O) in the Canol Formation (Selwyn Basin, Canada)
  • 2022
  • In: Frontiers in Earth Science. - : Frontiers Media SA. - 2296-6463. ; 9
  • Journal article (peer-reviewed)abstract
    • The sulfur isotope composition of pyrite in marine sedimentary rocks is often difficult to interpret due to a lack of precise isotopic constraints for coeval sulfate. This study examines pyrite and barite in the Late Devonian Canol Formation (Selwyn Basin, Canada), which provides an archive of δ34S and δ18O values during diagenesis. Scanning electron microscopy (SEM) has been combined with microscale secondary ion mass spectrometry (SIMS) analysis (n = 1,032) of pyrite (δ34S) and barite (δ34S and δ18O) on samples collected from nine stratigraphic sections of the Canol Formation. Two paragenetic stages of pyrite and barite formation have been distinguished, both replaced by barium carbonate and feldspar. The δ34Sbarite and δ18Obarite values from all sections overlap, between +37.1‰ and +67.9‰ (median = +45.7‰) and +8.8‰ and +23.9‰ (median = +20.0‰), respectively. Barite morphologies and isotopic values are consistent with precipitation from diagenetically modified porewater sulfate (sulfate resupply &lt;&lt; sulfate depletion) during early diagenesis. The two pyrite generations (Py-1 and Py-2) preserve distinct textures and end-member isotopic records. There is a large offset from coeval Late Devonian seawater sulfate in the δ34Spyrite values of framboidal pyrite (-29.4‰ to -9.3‰), consistent with dissimilatory microbial sulfate reduction (MSR) during early diagenesis. The Py-2 is in textural equilibrium with barite generation 2 (Brt-2) and records a broad range of more positive δ34SPy-2 values (+9.4‰ to + 44.5‰). The distinctive highly positive δ34Spyrite values developed from sulfate limited conditions around the sulfate methane transition zone (SMTZ). We propose that a combination of factors, including low sulfate concentrations, MSR, and sulfate reduction coupled to anaerobic oxidation of methane (SR-AOM), led to the formation of highly positive δ34Spyrite and δ34Sbarite values in the Canol Formation. The presence of highly positive δ34Spyrite values in other Late Devonian sedimentary units indicate that diagenetic pyrite formation at the SMTZ may be a more general feature of other Lower Paleozoic basins.
  •  
50.
  • Harazim, Dario, et al. (author)
  • Exceptional sulfur and iron isotope enrichment in millimetre-sized, early Palaeozoic animal burrows
  • 2020
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Pyrite-δ34S and -δ56Fe isotopes represent highly sensitive diagnostic paleoenvironmental proxies that express high variability at the bed (< 10 mm) scale that has so far defied explanation by a single formative process. This study reveals for the first time the paleoenvironmental context of exceptionally enriched pyrite-δ34S and -δ56Fe in bioturbated, storm-reworked mudstones of an early Ordovician storm-dominated delta (Tremadocian Beach Formation, Bell Island Group, Newfoundland). Very few studies provide insight into the low-temperature sulfur and iron cycling from bioturbated muddy settings for time periods prior to the evolution of deep soil horizons on land. Secondary ion mass spectroscopy (SIMS) analyses performed on Beach Formation muddy storm event beds reveal spatially distinct δ34S and δ56Fe values in: (a) tubular biogenic structures and trails (δ34S ~ +40‰; δ56Fe ~ −0.5‰), (b) silt-filled Planolites burrows (δ34S ~ +40‰; δ56Fe ~ +0.5 to + 2.1‰), and (c) non-bioturbated mudstone (δ34S ~ +35‰; δ56Fe ~ +0.5‰). δ34S values of well above + 40.0‰ indicate at least some pyrite precipitation in the presence of a 34S-depleted pore water sulfide reservoir, via closed system (Raleigh-type) fractionation. The preferential enrichment of 56Fe in Planolites burrows is best explained via microbially-driven liberation of Fe(II) from solid iron parent phases and precipitation from a depleted 54Fe dissolved Fe(II) reservoir. Rigorous sedimentological analysis represents a gateway to critically test the paleoenvironmental models describing the formation of a wide range of mudstones and elucidates the origins of variability in the global stable S and Fe isotope record.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 205
Type of publication
journal article (201)
other publication (2)
book chapter (2)
Type of content
peer-reviewed (203)
other academic/artistic (2)
Author/Editor
Whitehouse, Martin J ... (204)
Nemchin, A. A. (13)
Flowerdew, Michael J ... (9)
Ploug, Helle (8)
Dunkley, Daniel J. (7)
Kusiak, Monika A. (7)
show more...
Wilde, Simon A. (7)
Kenny, G. G. (6)
Flowerdew, M. J. (5)
Pease, Victoria (5)
Snape, J. F. (5)
Riley, Teal. R. (5)
Gardiner, N.J. (5)
Kemp, Anthony I. S. (5)
Klawonn, Isabell (4)
Scherstén, Anders (4)
Bellucci, J. J. (4)
Merle, Renaud E., 19 ... (4)
Kamber, B.S. (4)
Bizzarro, M. (4)
John, T (4)
Sałacińska, Anna (4)
Littmann, Sten (4)
Hanchar, J.M. (4)
Robb, L.J. (4)
Searle, M.P. (4)
Martinsson, Olof (3)
Ali, K.A. (3)
Nahar, Nurun (3)
Walve, Jakob (3)
Kuypers, Marcel M. M ... (3)
Majka, Jaroslaw (3)
Andersen, T. (3)
Troll, Valentin R. (3)
Bischoff, A (3)
Daly, J Stephen (3)
Nemchin, Alexander (3)
Drake, Henrik, 1979- (3)
Bingen, Bernard (3)
Lahaye, Y (3)
Connelly, J.N. (3)
Stern, Robert J. (3)
Millar, I. L. (3)
Millar, Ian L. (3)
Joy, K. H. (3)
Kielman, Ross (3)
Roberts, N. M. W. (3)
Olofsson, Malin (3)
Mason, P.R.D. (3)
Jarrar, Ghaleb H. (3)
show less...
University
Swedish Museum of Natural History (205)
Stockholm University (17)
University of Gothenburg (11)
Uppsala University (10)
Lund University (8)
Linnaeus University (5)
show more...
Luleå University of Technology (3)
RISE (2)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (205)
Research subject (UKÄ/SCB)
Natural sciences (204)
Engineering and Technology (1)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view