SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wiesenberger M.) "

Search: WFRF:(Wiesenberger M.)

  • Result 1-11 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2018
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Research review (peer-reviewed)
  •  
2.
  • Bombarda, F., et al. (author)
  • Runaway electron beam control
  • 2019
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Journal article (peer-reviewed)
  •  
3.
  • 2018
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:9
  • Journal article (peer-reviewed)
  •  
4.
  • Meyer, H., et al. (author)
  • Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution
  • 2017
  • In: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:10
  • Journal article (peer-reviewed)abstract
    • Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement H-H(98,H-y2) approximate to 0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.
  •  
5.
  • Meyer, H., et al. (author)
  • Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution
  • 2017
  • In: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:10
  • Journal article (peer-reviewed)abstract
    • Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement H-H(98,H-y2) approximate to 0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.
  •  
6.
  • Labit, B., et al. (author)
  • Dependence on plasma shape and plasma fueling for small edge-localized mode regimes in TCV and ASDEX Upgrade
  • 2019
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:8
  • Journal article (peer-reviewed)abstract
    • © 2019 Institute of Physics Publishing. All rights reserved. Within the EUROfusion MST1 work package, a series of experiments has been conducted on AUG and TCV devices to disentangle the role of plasma fueling and plasma shape for the onset of small ELM regimes. On both devices, small ELM regimes with high confinement are achieved if and only if two conditions are fulfilled at the same time. Firstly, the plasma density at the separatrix must be large enough (ne,sep/nG ∼ 0.3), leading to a pressure profile flattening at the separatrix, which stabilizes type-I ELMs. Secondly, the magnetic configuration has to be close to a double null (DN), leading to a reduction of the magnetic shear in the extreme vicinity of the separatrix. As a consequence, its stabilizing effect on ballooning modes is weakened.
  •  
7.
  • Coda, S., et al. (author)
  • Physics research on the TCV tokamak facility: From conventional to alternative scenarios and beyond
  • 2019
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Journal article (peer-reviewed)abstract
    • The research program of the TCV tokamak ranges from conventional to advanced-tokamak scenarios and alternative divertor configurations, to exploratory plasmas driven by theoretical insight, exploiting the device's unique shaping capabilities. Disruption avoidance by real-time locked mode prevention or unlocking with electron-cyclotron resonance heating (ECRH) was thoroughly documented, using magnetic and radiation triggers. Runaway generation with high-Z noble-gas injection and runaway dissipation by subsequent Ne or Ar injection were studied for model validation. The new 1 MW neutral beam injector has expanded the parameter range, now encompassing ELMy H-modes in an ITER-like shape and nearly non-inductive H-mode discharges sustained by electron cyclotron and neutral beam current drive. In the H-mode, the pedestal pressure increases modestly with nitrogen seeding while fueling moves the density pedestal outwards, but the plasma stored energy is largely uncorrelated to either seeding or fueling. High fueling at high triangularity is key to accessing the attractive small edge-localized mode (type-II) regime. Turbulence is reduced in the core at negative triangularity, consistent with increased confinement and in accord with global gyrokinetic simulations. The geodesic acoustic mode, possibly coupled with avalanche events, has been linked with particle flow to the wall in diverted plasmas. Detachment, scrape-off layer transport, and turbulence were studied in L- and H-modes in both standard and alternative configurations (snowflake, super-X, and beyond). The detachment process is caused by power 'starvation' reducing the ionization source, with volume recombination playing only a minor role. Partial detachment in the H-mode is obtained with impurity seeding and has shown little dependence on flux expansion in standard single-null geometry. In the attached L-mode phase, increasing the outer connection length reduces the in-out heat-flow asymmetry. A doublet plasma, featuring an internal X-point, was achieved successfully, and a transport barrier was observed in the mantle just outside the internal separatrix. In the near future variable-configuration baffles and possibly divertor pumping will be introduced to investigate the effect of divertor closure on exhaust and performance, and 3.5 MW ECRH and 1 MW neutral beam injection heating will be added.
  •  
8.
  • Wiesenberger, M., et al. (author)
  • Reproducibility, accuracy and performance of the FELTOR code and library on parallel computer architectures
  • 2019
  • In: Computer Physics Communications. - : Elsevier. - 0010-4655 .- 1879-2944. ; 238, s. 145-156
  • Journal article (peer-reviewed)abstract
    • FELTOR is a modular and free scientific software package. It allows developing platform independent code that runs on a variety of parallel computer architectures ranging from laptop CPUs to multi-GPU distributed memory systems. FELTOR consists of both a numerical library and a collection of application codes built on top of the library. Its main targets are two- and three-dimensional drift- and gyro-fluid simulations with discontinuous Galerkin methods as the main numerical discretization technique. We observe that numerical simulations of a recently developed gyro-fluid model produce non-deterministic results in parallel computations. First, we show how we restore accuracy and bitwise reproducibility algorithmically and programmatically. In particular, we adopt an implementation of the exactly rounded dot product based on long accumulators, which avoids accuracy losses especially in parallel applications. However, reproducibility and accuracy alone fail to indicate correct simulation behavior. In fact, in the physical model slightly different initial conditions lead to vastly different end states. This behavior translates to its numerical representation. Pointwise convergence, even in principle, becomes impossible for long simulation times. We briefly discuss alternative methods to ensure the correctness of results like the convergence of reduced physical quantities of interest, ensemble simulations, invariants or reduced simulation times. In a second part, we explore important performance tuning considerations. We identify latency and memory bandwidth as the main performance indicators of our routines. Based on these, we propose a parallel performance model that predicts the execution time of algorithms implemented in FELTOR and test our model on a selection of parallel hardware architectures. We are able to predict the execution time with a relative error of less than 25% for problem sizes between 10 −1 and 10 3 MB. Finally, we find that the product of latency and bandwidth gives a minimum array size per compute node to achieve a scaling efficiency above 50% (both strong and weak).
  •  
9.
  • Held, Markus, 1986, et al. (author)
  • Beyond the Oberbeck-Boussinesq and long wavelength approximation
  • 2023
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 63:2
  • Journal article (peer-reviewed)abstract
    • We present the first simulations of a reduced magnetized plasma model that incorporates both arbitrary wavelength polarization and non-Oberbeck-Boussinesq effects. Significant influence of these two effects on the density, electric potential and E x B vorticity and non-linear dynamics of interchange blobs are reported. Arbitrary wavelength polarization implicates so-called gyro-amplification that compared to a long wavelength approximation leads to highly amplified small-scale E x B vorticity fluctuations. These strongly increase the coherence and lifetime of blobs and alter the motion of the blobs through a slower blob-disintegration. Non-Oberbeck-Boussinesq effects incorporate plasma inertia, which substantially decreases the growth rate and linear acceleration of high amplitude blobs, while the maximum blob velocity is not affected. Finally, we generalize and numerically verify unified scaling laws for blob velocity, acceleration and growth rate that include both ion temperature and arbitrary blob amplitude dependence.
  •  
10.
  • Held, Markus, 1986, et al. (author)
  • Padé-based arbitrary wavelength polarization closures for full-F gyro-kinetic and -fluid models
  • 2020
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 60:6
  • Journal article (peer-reviewed)abstract
    • We propose a solution to the long-standing short wavelength polarization closure shortfall of full-F gyro-fluid models. This is achieved by first finding an appropriate quadratic form of the gyro-fluid moment over the polarization part of the gyro-center Hamiltonian. Secondly, we deduce Padé-based approximations to the latter expression that produce a polarization charge density with the desired order of accuracy and retain linear polarization effects for arbitrary wavelengths. The proposed closures feature proper energy conservation and the anticipated Oberbeck-Boussinesq and long wavelength limits.
  •  
11.
  • Wiesenberger, M., et al. (author)
  • Angular momentum and rotational energy of mean flows in toroidal magnetic fields
  • 2020
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 60:9
  • Journal article (peer-reviewed)abstract
    • We derive the balance equation for the Favre averaged angular momentum in toroidal not necessarily axisymmetric magnetic field equilibria. We find that the components of angular momentum are given by the covariant poloidal and toroidal components of E x B and parallel flow velocities and we separately identify all relevant stress tensors, torques and source terms for each of these components. Our results feature the Favre stress generalisations of previously found Reynolds stresses like the diamagnetic or parallel E x B stress, as well as the density gradient drive term. Further, we identify the magnetic shear as a source of poloidal E x B angular momentum and discuss the mirror and the Lorentz force. Here, we find that the geodesic transfer term, the Stringer-Winsor spin-up term and the ion-orbit loss term are all part of the Lorentz force and are in fact one and the same term. Discussing the relation to angular velocity we build the inertia tensor with the help of the first fundamental form of a flux-surface. In turn, the inertia tensor is used to construct a flux-surface averaged rotational energy for E x B surface flows of the plasma. The evolution of this rotational energy features a correction of previous results due to the inertia tensor. In particular, this correction suggests that density sources on the high-field side contribute much more to zonal flow energy generation than on the low field side. Our derivation is based on a full-F, electromagnetic, gyro-kinetic model in a long-wavelength limit. The results can be applied to gyro-kinetic as well as gyro-fluid theories and can also be compared to drift-kinetic and drift-fluid models. Simplified cases for the magnetic field geometry including the axisymmetric purely toroidal and purely poloidal magnetic fields are discussed, as are the angular momentum balance of the electromagnetic fields, the ion-orbit loss mechanism and the parallel acceleration.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-11 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view