SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wurth W) "

Search: WFRF:(Wurth W)

  • Result 1-23 of 23
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abt, I, et al. (author)
  • Inclusive V-0 production cross sections from 920 GeV fixed target proton-nucleus collisions
  • 2003
  • In: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 29:2, s. 181-190
  • Journal article (peer-reviewed)abstract
    • Inclusive differential cross sections dsigma(pA)/dx(F) and dsigma(pA)/dp(t)(2) for the production of K-S(0), Lambda, and (&ULambda;) over bar particles are measured at HERA in proton-induced reactions on C, Al, Ti, and W targets. The incident beam energy is 920 GeV, corresponding to roots = 41.6 GeV in the proton-nucleon system. The ratios of differential cross sections dsigma(pA)(K-S(0))/dsigma(pA)(Lambda) and dsigma(pA)((&ULambda;) over bar)/dsigma(pA) (Lambda) are measured to be 6.2 +/- 0.5 and 0.66 +/- 0.07, respectively, for x(F) approximate to -0.06. No significant dependence upon the target material is observed. Within errors, the slopes of the transverse momentum distributions da,Ald t also show no significant dependence upon the target material. The dependence of the extrapolated total cross sections sigma(pA) on the atomic mass A of the target material is discussed, and the deduced cross sections per nucleon sigma(pN) are compared with results obtained at other energies.
  •  
2.
  • Abt, I, et al. (author)
  • Measurement of the b(b)over-bar production cross section in 920 GeV fixed-target proton-nucleus collisions
  • 2003
  • In: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 26:3, s. 345-355
  • Journal article (peer-reviewed)abstract
    • Using the HERA-B detector, the b (b) over bar production cross section has been measured in 920 GeV proton collisions on carbon and titanium targets. The b (b) over bar production was tagged via inclusive bottom quark decays into J/psi by exploiting the longitudinal separation of J/psi --> l(+)l(-) decay vertices from the primary proton-nucleus interaction. Both e(+)e(-) and mu(+)mu(-) channels have been reconstructed and the combined analysis yields the cross section sigma(b (b) over bar) = 32(-12)(+14)(stat) (+6)(-7)(sys) nb/nucleon.
  •  
3.
  • Faatz, B., et al. (author)
  • Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator
  • 2016
  • In: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 18
  • Journal article (peer-reviewed)abstract
    • Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs-dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated in both FELs simultaneously. FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.
  •  
4.
  • Beye, M., et al. (author)
  • Selective Ultrafast Probing of Transient Hot Chemisorbed and Precursor States of CO on Ru(0001)
  • 2013
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 110:18
  • Journal article (peer-reviewed)abstract
    • We have studied the femtosecond dynamics following optical laser excitation of CO adsorbed on a Ru surface by monitoring changes in the occupied and unoccupied electronic structure using ultrafast soft x-ray absorption and emission. We recently reported [M. Dell'Angela et al. Science 339, 1302 (2013)] a phonon-mediated transition into a weakly adsorbed precursor state occurring on a time scale of >2 ps prior to desorption. Here we focus on processes within the first picosecond after laser excitation and show that the metal-adsorbate coordination is initially increased due to hot-electron-driven vibrational excitations. This process is faster than, but occurs in parallel with, the transition into the precursor state. With resonant x-ray emission spectroscopy, we probe each of these states selectively and determine the respective transient populations depending on optical laser fluence. Ab initio molecular dynamics simulations of CO adsorbed on Ru(0001) were performed at 1500 and 3000 K providing insight into the desorption process.
  •  
5.
  • Dell'Angela, M., et al. (author)
  • Real-Time Observation of Surface Bond Breaking with an X-ray Laser
  • 2013
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 339:6125, s. 1302-1305
  • Journal article (peer-reviewed)abstract
    • We used the Linac Coherent Light Source free-electron x-ray laser to probe the electronic structure of CO molecules as their chemisorption state on Ru(0001) changes upon exciting the substrate by using a femtosecond optical laser pulse. We observed electronic structure changes that are consistent with a weakening of the CO interaction with the substrate but without notable desorption. A large fraction of the molecules (30%) was trapped in a transient precursor state that would precede desorption. We calculated the free energy of the molecule as a function of the desorption reaction coordinate using density functional theory, including van der Waals interactions. Two distinct adsorption wells-chemisorbed and precursor state separated by an entropy barrier-explain the anomalously high prefactors often observed in desorption of molecules from metals.
  •  
6.
  • Dell'Angela, M., et al. (author)
  • Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer
  • 2015
  • In: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 2:2
  • Journal article (peer-reviewed)abstract
    • Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.
  •  
7.
  • Katayama, T., et al. (author)
  • Ultrafast soft X-ray emission spectroscopy of surface adsorbates using an X-ray free electron laser
  • 2013
  • In: Journal of Electron Spectroscopy and Related Phenomena. - : Elsevier BV. - 0368-2048 .- 1873-2526. ; 187, s. 9-14
  • Journal article (peer-reviewed)abstract
    • We report on an experimental system designed to probe chemical reactions on solid surfaces on a sub-picosecond timescale using soft X-ray emission spectroscopy at the Linac Coherent Light Source (LCLS) free electron laser (FEL) at the SLAC National Accelerator Laboratory. We analyzed the O 1s X-ray emission spectra recorded from atomic oxygen adsorbed on a Ru(0001) surface at a synchrotron beamline (SSRL, BL13-2) and an FEL beamline (LCLS, SXR). We have demonstrated conditions that provide negligible amount of FEL induced damage of the sample. In addition we show that the setup is capable of tracking the temporal evolution of electronic structure during a surface reaction of submonolayer quantities of CO molecules desorbing from the surface.
  •  
8.
  • Xin, H., et al. (author)
  • Strong Influence of Coadsorbate Interaction on CO Desorption Dynamics on Ru(0001) Probed by Ultrafast X-Ray Spectroscopy and Ab Initio Simulations
  • 2015
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 114:15
  • Journal article (peer-reviewed)abstract
    • We show that coadsorbed oxygen atoms have a dramatic influence on the CO desorption dynamics from Ru(0001). In contrast to the precursor-mediated desorption mechanism on Ru(0001), the presence of surface oxygen modifies the electronic structure of Ru atoms such that CO desorption occurs predominantly via the direct pathway. This phenomenon is directly observed in an ultrafast pump-probe experiment using a soft x-ray free-electron laser to monitor the dynamic evolution of the valence electronic structure of the surface species. This is supported with the potential of mean force along the CO desorption path obtained from density-functional theory calculations. Charge density distribution and frozen-orbital analysis suggest that the oxygen-induced reduction of the Pauli repulsion, and consequent increase of the dative interaction between the CO 5 sigma and the charged Ru atom, is the electronic origin of the distinct desorption dynamics. Ab initio molecular dynamics simulations of CO desorption from Ru(0001) and oxygen-coadsorbed Ru(0001) provide further insights into the surface bond-breaking process.
  •  
9.
  • Öberg, Henrik, et al. (author)
  • Optical laser-induced CO desorption from Ru(0001) monitored with a free-electron X-ray laser : DFT prediction and X-ray confirmation of a precursor state
  • 2015
  • In: Surface Science. - : Elsevier BV. - 0039-6028 .- 1879-2758. ; 640, s. 80-88
  • Journal article (peer-reviewed)abstract
    • We present density functional theory modeling of time-resolved optical pump/X-ray spectroscopic probe data of CO desorption from Ru(0001). The BEEF van der Waals functional predicts a weakly bound state as a precursor to desorption. The optical pump leads to a near-instantaneous (<100 fs) increase of the electronic temperature to nearly 7000 K. The temperature evolution and energy transfer between electrons, substrate phonons and adsorbate is described by the two-temperature model and found to equilibrate on a timescale of a few picoseconds to an elevated local temperature of similar to 2000K. Estimating the free energy based on the computed potential of mean force along the desorption path, we find an entropic barrier to desorption (and by time-reversal also to adsorption). This entropic barrier separates the chemisorbed and precursor states, and becomes significant at the elevated temperature of the experiment (similar to 1.4 eV at 2000 K). Experimental pump-probe X-ray absorption/X-ray emission spectroscopy indicates population of a precursor state to desorption upon laser-excitation of the system (Dell'Angela et al., 2013). Computing spectra along the desorption path confirms the picture of a weakly bound transient state arising from ultrafast heating of the metal substrate.
  •  
10.
  • Östrom, Henrik, et al. (author)
  • Probing the transition state region in catalytic CO oxidation on Ru
  • 2015
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 347:6225, s. 978-982
  • Journal article (peer-reviewed)abstract
    • Femtosecond x-ray laser pulses are used to probe the carbon monoxide (CO) oxidation reaction on ruthenium (Ru) initiated by an optical laser pulse. On a time scale of a few hundred femtoseconds, the optical laser pulse excites motions of CO and oxygen (O) on the surface, allowing the reactants to collide, and, with a transient close to a picosecond (ps), new electronic states appear in the OK-edge x-ray absorption spectrum. Density functional theory calculations indicate that these result from changes in the adsorption site and bond formation between CO and O with a distribution of OC-O bond lengths close to the transition state (TS). After 1 ps, 10% of the CO populate the TS region, which is consistent with predictions based on a quantum oscillator model.
  •  
11.
  •  
12.
  • Deppe, M., et al. (author)
  • Ultrafast charge transfer and atomic orbital polarization
  • 2007
  • In: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 127:17
  • Journal article (peer-reviewed)abstract
    • The role of orbital polarization for ultrafast charge transfer between an atomic adsorbate and a substrate is explored. Core hole clock spectroscopy with linearly polarized x-ray radiation allows to selectively excite adsorbate resonance states with defined spatial orientation relative to the substrate surface. For c(4x2)S/Ru(0001) the charge transfer times between the sulfur 2s(-1)3p(*+1) antibonding resonance and the ruthenium substrate have been studied, with the 2s electron excited into the 3p(perpendicular to)(*) state along the surface normal and the 3p(parallel to)(*) state in the surface plane. The charge transfer times are determined as 0.18 +/- 0.07 and 0.84 +/- 0.23 fs, respectively. This variation is the direct consequence of the different adsorbate-substrate orbital overlap.
  •  
13.
  • Foehlisch, A., et al. (author)
  • Charge transfer dynamics in molecular solids and adsorbates driven by local and non-local excitations
  • 2012
  • In: Surface Science. - : Elsevier BV. - 0039-6028. ; 606:11-12, s. 881-885
  • Journal article (peer-reviewed)abstract
    • Charge transfer pathways and charge transfer times in molecular films and in adsorbate layers depend both on the details of the electronic structure as well as on the degree of the initial localization of the propagating excited electronic state. For C6F6 molecular adsorbate films on the Cu(111) surface we determined the interplay between excited state localization and charge transfer pathways. In particular we selectively prepared a free-particle-like LUMO band excitation and compared it to a molecularly localized core-excited C1s -> pi* C6F6 LUMO state using time-resolved two-photon photoemission (tr-2PPE) and core-sole-clock (CHC) spectroscopy, respectively. For the molecularly localized core-excited C1s -> pi* C6F6 LUMO state, we separate the intramolecular dynamics from the charge transfer dynamics to the metal substrate by taking the intramolecular dynamics of the free C6F6 molecule into account Our analysis yields a generally applicable description of charge transfer within molecular adsorbates and to the substrate. (C) 2011 Published by Elsevier B.V.
  •  
14.
  • Fohlisch, A, et al. (author)
  • Franck-Condon breakdown in core-level photoelectron spectroscopy of chemisorbed CO
  • 1999
  • In: CHEMICAL PHYSICS LETTERS. - : ELSEVIER SCIENCE BV. - 0009-2614. ; 315:3-4, s. 194-200
  • Journal article (peer-reviewed)abstract
    • The photon energy dependence of the vibrational fine structure in the Cls and Ols X-ray photoelectron main lines of chemisorbed CO on Ni(100) and Ru(0001) has been measured from 6 to 150 eV above the core-level thresholds. Significant deviations from the
  •  
15.
  • Hellmann, S., et al. (author)
  • Time-resolved x-ray photoelectron spectroscopy at FLASH
  • 2012
  • In: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 14
  • Journal article (peer-reviewed)abstract
    • The technique of time-resolved pump-probe x-ray photoelectron spectroscopy using the free-electron laser in Hamburg (FLASH) is described in detail. Particular foci lie on the macrobunch resolving detection scheme, the role of vacuum space-charge effects and the synchronization of pump and probe lasers. In an exemplary case study, the complete Ta 4f core-level dynamics in the layered charge-density-wave (CDW) compound 1T-TaS2 in response to impulsive optical excitation is measured on the sub-picosecond to nanosecond timescale. The observed multi-component dynamics is related to the intrinsic melting and reformation of the CDW as well as to extrinsic pump-laser-induced vacuum space-charge effects.
  •  
16.
  • Hellmann, S., et al. (author)
  • Ultrafast Melting of a Charge-Density Wave in the Mott Insulator 1T-TaS2
  • 2010
  • In: Physical Review Letters. - 1079-7114. ; 105:18
  • Journal article (peer-reviewed)abstract
    • Femtosecond time-resolved core-level photoemission spectroscopy with a free-electron laser is used to measure the atomic-site specific charge-order dynamics of the charge-density wave in the Mott insulator 1T-TaS2. After strong photoexcitation, a prompt loss of charge order and subsequent fast equilibration dynamics of the electron-lattice system are observed. On the time scale of electron-phonon thermalization, about 1 ps, the system is driven across a phase transition from a long-range charge ordered state to a quasiequilibrium state with domainlike short-range charge and lattice order. The experiment opens the way to study the nonequilibrium dynamics of condensed matter systems with full elemental, chemical, and atomic-site selectivity.
  •  
17.
  • Hennies, F., et al. (author)
  • Dynamic interpretation of resonant x-ray Raman scattering : ethylene and benzene
  • 2007
  • In: Physical Review A. Atomic, Molecular, and Optical Physics. - 1050-2947 .- 1094-1622. ; 76:3, s. 032505-
  • Journal article (peer-reviewed)abstract
    • We present a dynamic interpretation of resonant x-ray Raman scattering where vibrationally selective excitation into molecular resonances has been employed in comparison with excitation into higher lying continuum states for condensed ethylene and benzene as molecular model systems. In order to describe the purely vibrational spectral loss features and coupled electronic and vibrational losses the one-step theory for resonant soft x-ray scattering is applied, taking multiple vibrational modes and vibronic coupling into account. The scattering profile is found to be strongly excitation energy dependent and to reflect the intermediate states dynamics of the scattering process. In particular, the purely vibrational loss features allow one to map the electronic ground state potential energy surface in light of the excited state dynamics. Our study of ethylene and benzene underlines the necessity of an explicit description of the coupled electronic and vibrational loss features for the assignment of spectral features observed in resonant x-ray Raman scattering at polyatomic systems, which can be done in both a time independent and a time dependent picture. The possibility to probe ground state vibrational properties opens a perspective to future applications of this photon-in-photon-out spectroscopy.
  •  
18.
  • Hennies, F., et al. (author)
  • Non-Adiabatic effects in Resonant Inelastic x-ray Scattering
  • 2005
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 95:16, s. 163002-
  • Journal article (peer-reviewed)abstract
    • We have studied the spectral features of resonant inelastic x-ray scattering of condensed ethylene with vibrational selectivity both experimentally and theoretically. Purely vibrational spectral loss features and coupled electronic and vibrational losses are observed. The one-step theory for resonant soft x-ray scattering is applied, taking multiple vibrational modes and vibronic coupling into account. Our investigation of ethylene underlines that the assignment of spectral features observed in resonant inelastic x-ray scattering of polyatomic systems requires an explicit description of the coupled electronic and vibrational loss features.
  •  
19.
  •  
20.
  • LaRue, Jerry, et al. (author)
  • Real-Time Elucidation of Catalytic Pathways in CO Hydrogenation on Ru
  • 2017
  • In: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 8:16, s. 3820-3825
  • Journal article (peer-reviewed)abstract
    • The direct elucidation of the reaction pathways in heterogeneous catalysis has been challenging due to the short-lived nature of reaction intermediates. Here, we directly measured on ultrafast time scales the initial hydrogenation steps of adsorbed CO on a Ru catalyst surface, which is known as the bottleneck reaction in syngas and CO2 reforming processes. We initiated the hydrogenation of CO with an ultrafast laser temperature jump and probed transient changes in the electronic structure using real-time X-ray spectroscopy. In combination with theoretical simulations, we verified the formation of CHO during CO hydrogenation.
  •  
21.
  •  
22.
  • Nilsson, Anders, et al. (author)
  • Catalysis in real time using X-ray lasers
  • 2017
  • In: Chemical Physics Letters. - : Elsevier BV. - 0009-2614 .- 1873-4448. ; 675, s. 145-173
  • Journal article (peer-reviewed)abstract
    • We describe how the unique temporal and spectral characteristics of X-ray free-electron lasers (XFEL) can be utilized to follow chemical transformations in heterogeneous catalysis in real time. We highlight the systematic study of CO oxidation on Ru(0001), which we initiate either using a femtosecond pulse from an optical laser or by activating only the oxygen atoms using a THz pulse. We find that CO is promoted into an entropy-controlled precursor state prior to desorbing when the surface is heated in the absence of oxygen, whereas in the presence of oxygen, CO desorbs directly into the gas phase. We monitor the activation of atomic oxygen explicitly by the reduced split between bonding and antibonding orbitals as the oxygen comes out of the strongly bound hollow position. Applying these novel XFEL techniques to the full oxidation reaction resulted in the surprising observation of a significant fraction of the reactants at the transition state through the electronic signature of the new bond formation.
  •  
23.
  • Staufer, M, et al. (author)
  • Interpretation of x-ray emission spectra: NO adsorbed on Ru(001)
  • 1999
  • In: JOURNAL OF CHEMICAL PHYSICS. - : AMER INST PHYSICS. - 0021-9606. ; 111:10, s. 4704-4713
  • Journal article (other academic/artistic)abstract
    • A density functional investigation of the x-ray emission spectrum of NO adsorbed on Ru(001) has been carried out using model cluster calculations. The dipole matrix elements governing the emission probability were evaluated in the frozen ground-state appr
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-23 of 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view