SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wyse R. F. G.) "

Sökning: WFRF:(Wyse R. F. G.)

  • Resultat 1-37 av 37
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gilmore, G., et al. (författare)
  • The Gaia-ESO Public Spectroscopic Survey : Motivation, implementation, GIRAFFE data processing, analysis, and final data products star
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to obtain astrophysical parameters and elemental abundances for 100 000 stars, including large representative samples of the stellar populations in the Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We provide internally consistent results calibrated on benchmark stars and star clusters, extending across a very wide range of abundances and ages. This provides a legacy data set of intrinsic value, and equally a large wide-ranging dataset that is of value for the homogenisation of other and future stellar surveys and Gaia's astrophysical parameters. Aims. This article provides an overview of the survey methodology, the scientific aims, and the implementation, including a description of the data processing for the GIRAFFE spectra. A companion paper introduces the survey results. Methods. Gaia-ESO aspires to quantify both random and systematic contributions to measurement uncertainties. Thus, all available spectroscopic analysis techniques are utilised, each spectrum being analysed by up to several different analysis pipelines, with considerable effort being made to homogenise and calibrate the resulting parameters. We describe here the sequence of activities up to delivery of processed data products to the ESO Science Archive Facility for open use. Results. The Gaia-ESO Survey obtained 202 000 spectra of 115 000 stars using 340 allocated VLT nights between December 2011 and January 2018 from GIRAFFE and UVES. Conclusions. The full consistently reduced final data set of spectra was released through the ESO Science Archive Facility in late 2020, with the full astrophysical parameters sets following in 2022. A companion article reviews the survey implementation, scientific highlights, the open cluster survey, and data products.
  •  
2.
  • Randich, S., et al. (författare)
  • The Gaia-ESO Public Spectroscopic Survey : Implementation, data products, open cluster survey, science, and legacy
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In the last 15 years different ground-based spectroscopic surveys have been started (and completed) with the general aim of delivering stellar parameters and elemental abundances for large samples of Galactic stars, complementing Gaia astrometry. Among those surveys, the Gaia-ESO Public Spectroscopic Survey, the only one performed on a 8m class telescope, was designed to target 100 000 stars using FLAMES on the ESO VLT (both Giraffe and UVES spectrographs), covering all the Milky Way populations, with a special focus on open star clusters. Aims. This article provides an overview of the survey implementation (observations, data quality, analysis and its success, data products, and releases), of the open cluster survey, of the science results and potential, and of the survey legacy. A companion article reviews the overall survey motivation, strategy, Giraffe pipeline data reduction, organisation, and workflow. Methods. We made use of the information recorded and archived in the observing blocks; during the observing runs; in a number of relevant documents; in the spectra and master catalogue of spectra; in the parameters delivered by the analysis nodes and the working groups; in the final catalogue; and in the science papers. Based on these sources, we critically analyse and discuss the output and products of the Survey, including science highlights. We also determined the average metallicities of the open clusters observed as science targets and of a sample of clusters whose spectra were retrieved from the ESO archive. Results. The Gaia-ESO Survey has determined homogeneous good-quality radial velocities and stellar parameters for a large fraction of its more than 110 000 unique target stars. Elemental abundances were derived for up to 31 elements for targets observed with UVES. Lithium abundances are delivered for about 1/3 of the sample. The analysis and homogenisation strategies have proven to be successful; several science topics have been addressed by the Gaia-ESO consortium and the community, with many highlight results achieved. Conclusions. The final catalogue will be released through the ESO archive in the first half of 2022, including the complete set of advanced data products. In addition to these results, the Gaia-ESO Survey will leave a very important legacy, for several aspects and for many years to come.
  •  
3.
  • Pham, M. K., et al. (författare)
  • A new Certified Reference Material for radionuclides in Irish sea sediment (IAEA-385)
  • 2008
  • Ingår i: APPLIED RADIATION AND ISOTOPES. - : Elsevier BV. - 0969-8043 .- 1872-9800. ; 66:11, s. 1711-1717
  • Konferensbidrag (refereegranskat)abstract
    • A new Certified Reference Material (CRM) for radionuclides in sediment (IAEA-385) is described and the results of the certification process are presented. Eleven radionuclides (K-40, Cs-137, Ra-226, Ra-228, Th-230, Th-232, U-234, U-238, Pu-238, Pu239+240 and Am-241) have been certified and information mass activities with 95% confidence intervals are given for seven other radionuclides (Sr-90, Pb-210(Po-210), U-235, Pu-239, Pu-240 and Pu-241). Results for less frequently reported radionuclides (Co-60, Tc-99, Cs-134, Eu-155, Ra-224 and Np-239) and information on some activity and mass ratios are also reported. The CRM can be used for quality assurance/quality control of the analysis of radionuclides in sediment samples, for the development and validation of analytical methods and for training purposes. (C) 2008 IAEA. Published by Elsevier Ltd. All rights reserved.
  •  
4.
  •  
5.
  •  
6.
  • Buder, S., et al. (författare)
  • The GALAH survey : An abundance, age, and kinematic inventory of the solar neighbourhood made with TGAS
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 624
  • Tidskriftsartikel (refereegranskat)abstract
    • The overlap between the spectroscopic Galactic Archaeology with HERMES (GALAH) survey and Gaia provides a high-dimensional chemodynamical space of unprecedented size. We present a first analysis of a subset of this overlap, of 7066 dwarf, turn-off, and subgiant stars. These stars have spectra from the GALAH survey and high parallax precision from the Gaia DR1 Tycho-Gaia Astrometric Solution. We investigate correlations between chemical compositions, ages, and kinematics for this sample. Stellar parameters and elemental abundances are derived from the GALAH spectra with the spectral synthesis code SPECTROSCOPY MADE EASY. We determine kinematics and dynamics, including action angles, from the Gaia astrometry and GALAH radial velocities. Stellar masses and ages are determined with Bayesian isochrone matching, using our derived stellar parameters and absolute magnitudes. We report measurements of Li, C, O, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, as well as Ba and we note that we have employed non-LTE calculations for Li, O, Al, and Fe. We show that the use of astrometric and photometric data improves the accuracy of the derived spectroscopic parameters, especially log g. Focusing our investigation on the correlations between stellar age, iron abundance [Fe/H], and mean alpha-enhancement [alpha/Fe] of the magnitude-selected sample, we recover the result that stars of the high-a sequence are typically older than stars in the low-a sequence, the latter spanning iron abundances of -0.7 < [Fe/H] < +0.5. While these two sequences become indistinguishable in [alpha/Fe] vs. [Fe/H] at the metal-rich regime, we find that age can be used to separate stars from the extended high-a and the low-a sequence even in this regime. When dissecting the sample by stellar age, we find that the old stars (>8 Gyr) have lower angular momenta L-z than the Sun, which implies that they are on eccentric orbits and originate from the inner disc. Contrary to some previous smaller scale studies we find a continuous evolution in the high-alpha-sequence up to super-solar [Fe/H] rather than a gap, which has been interpreted as a separate "high-alpha metal-rich" population. Stars in our sample that are younger than 10 Gyr, are mainly found on the low alpha-sequence and show a gradient in L-z from low [Fe/H] > (L-z > L-z,L-circle dot) towards higher [Fe/H] (L-z < L-z,L-circle dot), which implies that the stars at the ends of this sequence are likely not originating from the close solar vicinity.
  •  
7.
  • Guiglion, G., et al. (författare)
  • The RAdial Velocity Experiment (RAVE) : Parameterisation of RAVE spectra based on convolutional neural networks
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 644
  • Tidskriftsartikel (refereegranskat)abstract
    • Context Data-driven methods play an increasingly important role in the field of astrophysics In the context of large spectroscopic surveys of stars, data-driven methods are key in deducing physical parameters for millions of spectra in a short time. Convolutional neural networks (CNNs) enable us to connect observables (e.g. spectra, stellar magnitudes) to physical properties (atmospheric parameters, chemical abundances, or labels in general). Aims. We test whether it is possible to transfer the labels derived from a high-resolution stellar survey to intermediate-resolution spectra of another survey by using a CNN. Methods. We trained a CNN, adopting stellar atmospheric parameters and chemical abundances from APOGEE DR16 (resolution Ra22 500) data as training set labels. As input, we used parts of the intermediate-resolution RAVE DR6 spectra (R ∼ 7500) overlapping with the APOGEE DR16 data as well as broad-band ALLWISE and 2MASS photometry, together with Gaia DR2 photometry and parallaxes. Results. We derived precise atmospheric parameters Teff, log(g), and [M/H], along with the chemical abundances of [Fe/H], [α/M], [Mg/Fe], [Si/Fe], [Al/Fe], and [Ni/Fe] for 420 165 RAVE spectra. The precision typically amounts to 60 K in Teff, 0.06 in log(g) and 0.02-0.04 dex for individual chemical abundances. Incorporating photometry and astrometry as additional constraints substantially improves the results in terms of the accuracy and precision of the derived labels, as long as we operate in those parts of the parameter space that are well-covered by the training sample. Scientific validation confirms the robustness of the CNN results. We provide a catalogue of CNN-Trained atmospheric parameters and abundances along with their uncertainties for 420 165 stars in the RAVE survey. Conclusions. CNN-based methods provide a powerful way to combine spectroscopic, photometric, and astrometric data without the need to apply any priors in the form of stellar evolutionary models. The developed procedure can extend the scientific output of RAVE spectra beyond DR6 to ongoing and planned surveys such as Gaia RVS, 4MOST, and WEAVE. We call on the community to place a particular collective emphasis and on efforts to create unbiased training samples for such future spectroscopic surveys.
  •  
8.
  • Valentini, M, et al. (författare)
  • RAVE stars in K2 : I. Improving RAVE red giants spectroscopy using asteroseismology from K2 Campaign 1
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 600
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a set of 87 RAVE stars with detected solar like oscillations, observed during Campaign 1 of the K2 mission (RAVE K2-C1 sample). This data set provides a useful benchmark for testing the gravities provided in RAVE data release 4 (DR4), and is key for the calibration of the RAVE data release 5 (DR5). The RAVE survey collected medium-resolution spectra (R = 7500) centred in the Ca II triplet(8600 Å) wavelength interval, which although being very useful for determining radial velocity and metallicity, even at low S/N, is known be affected by a log (g)-Teff degeneracy. This degeneracy is the cause of the large spread in the RAVE DR4 gravities for giants. The understanding of the trends and offsets that affects RAVE atmospheric parameters, and in particular log (g), is a crucial step in obtaining not only improved abundance measurements, but also improved distances and ages. In the present work, we use two different pipelines, GAUFRE and Sp-Ace, to determine atmospheric parameters and abundances by fixing log (g) to the seismic one. Our strategy ensures highly consistent values among all stellar parameters, leading to more accurate chemical abundances. A comparison of the chemical abundances obtained here with and without the use of seismic log (g) information has shown that an underestimated (overestimated) gravity leads to an underestimated (overestimated) elemental abundance (e.g. [Mg/H] is underestimated by ∼0.25 dex when the gravity is underestimated by 0.5 dex). We then perform a comparison between the seismic gravities and the spectroscopic gravities presented in the RAVE DR4 catalogue, extracting a calibration for log (g) of RAVE giants in the colour interval 0.50 < (J-KS) < 0.85. Finally, we show a comparison of the distances, temperatures, extinctions (and ages) derived here for our RAVE K2-C1 sample with those derived in RAVE DR4 and DR5. DR5 performs better than DR4 thanks to the seismic calibration, although discrepancies can still be important for objects for which the difference between DR4/DR5 and seismic gravities differ by more than ∼0.5 dex. The method illustrated in this work will be used for analysing RAVE targets present in the other K2 campaigns, in the framework of Galactic Archaeology investigations.
  •  
9.
  • Hawkins, K., et al. (författare)
  • Characterizing the high-velocity stars of RAVE: the discovery of a metal-rich halo star born in the Galactic disc
  • 2015
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 447:2, s. 2046-2058
  • Tidskriftsartikel (refereegranskat)abstract
    • We aim to characterize high-velocity (HiVel) stars in the solar vicinity both chemically and kinematically using the fourth data release of the RAdial Velocity Experiment (RAVE). We used a sample of 57 HiVel stars with Galactic rest-frame velocities larger than 275 km s(-1). With 6D position and velocity information, we integrated the orbits of the HiVel stars and found that, on average, they reach out to 13 kpc from the Galactic plane and have relatively eccentric orbits consistent with the Galactic halo. Using the stellar parameters and [alpha/Fe] estimates from RAVE, we found the metallicity distribution of the HiVel stars peak at [M/H] = -1.2 dex and is chemically consistent with the inner halo. There are a few notable exceptions that include a hypervelocity star candidate, an extremely HiVel bound halo star, and one star that is kinematically consistent with the halo but chemically consistent with the disc. High-resolution spectra were obtained for the metal-rich HiVel star candidate and the second highest velocity star in the sample. Using these high-resolution data, we report the discovery of a metal-rich halo star that has likely been dynamically ejected into the halo from the Galactic thick disc. This discovery could aid in explaining the assembly of the most metal-rich component of the Galactic halo.
  •  
10.
  • Kordopatis, G., et al. (författare)
  • The Gaia-ESO Survey: characterisation of the [alpha/Fe] sequences in the Milky Way discs
  • 2015
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 582
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. High-resolution spectroscopic surveys of stars indicate that the Milky Way thin and thick discs follow different paths in the chemical space defined by [alpha/Fe] vs. [Fe/H], possibly suggesting different formation mechanisms for each of these structures. Aims. We investigate, using the Gaia-ESO Survey internal Data-Release 2, the properties of the double sequence of the Milky Way discs, which are defined chemically as the high-alpha and low-alpha populations. We discuss their compatibility with discs defined by other means, such as metallicity, kinematics, or positions. Methods. This investigation uses two different approaches: in velocity space, for stars located in the extended solar neighbourhood; and, in chemical space, for stars at different ranges of Galactocentric radii and heights from the Galactic mid-plane. The separation we find in velocity space allows us to investigate, using a novel approach, the extent of metallicity of each of the two chemical sequences, without making any assumption about the shape of their metallicity distribution functions. Then, using the separation in chemical space, adopting the magnesium abundance as a tracer of the alpha-elements, we characterise the spatial variation of the slopes of the [alpha/Fe] [Fe/H] sequences for the thick and thin discs and the way in which the relative proportions of the two discs change across the Galaxy. Results. We find that the thick disc, defined as the stars tracing the high-alpha sequence, extends up to super-solar metallicities ([Fe/H] approximate to + 0.2 dex), and the thin disc, defined as the stars tracing the low-alpha sequence, extends at least down to [Fe/H] approximate to 0.8 dex, with hints pointing towards even lower values. Radial and vertical gradients in alpha-abundances are found for the thin disc, with mild spatial variations in its [alpha/Fe] [Fe/H] paths, whereas for the thick disc we do not detect any spatial variations of this kind. This is in agreement with results obtained recently from other high-resolution spectroscopic surveys. Conclusions. The small variations in the spatial [alpha/Fe] [Fe/H] paths of the thin disc do not allow us to distinguish between formation models of this structure. On the other hand, the lack of radial gradients and [alpha/Fe] [Fe/H] variations for the thick disc indicate that the mechanism responsible for the mixing of metals in the young Galaxy (e.g. radial stellar migration or turbulent gaseous disc) was more efficient before the (present) thin disc started forming.
  •  
11.
  •  
12.
  • Carrillo, I., et al. (författare)
  • Is the Milky Way still breathing? RAVE-Gaia streaming motions
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 475:2, s. 2679-2696
  • Tidskriftsartikel (refereegranskat)abstract
    • We use data from the Radial Velocity Experiment (RAVE) and the Tycho-Gaia astrometric solution (TGAS) catalogue to compute the velocity fields yielded by the radial (V-R), azimuthal (V-phi), and vertical (V-z) components of associated Galactocentric velocity. We search in particular for variation in all three velocity components with distance above and below the disc midplane, as well as how each component of V-z (line-of-sight and tangential velocity projections) modifies the obtained vertical structure. To study the dependence of velocity on proper motion and distance, we use two main samples: a RAVE sample including proper motions from the Tycho-2, PPMXL, and UCAC4 catalogues, and a RAVE-TGAS sample with inferred distances and proper motions from the TGAS and UCAC5 catalogues. In both samples, we identify asymmetries in V-R and V-z. Below the plane, we find the largest radial gradient to be partial derivative V-R/partial derivative R = -7.01 +/- 0.61 km s(-1) kpc(-1), in agreement with recent studies. Above the plane, we find a similar gradient with partial derivative V-R/partial derivative R = -9.42 +/- 1.77 km s(-1) kpc(-1). By comparing our results with previous studies, we find that the structure in V-z is strongly dependent on the adopted proper motions. Using the Galaxia Milky Way model, we demonstrate that distance uncertainties can create artificial wave-like patterns. In contrast to previous suggestions of a breathing mode seen in RAVE data, our results support a combination of bending and breathing modes, likely generated by a combination of external or internal and external mechanisms.
  •  
13.
  • Duong, L., et al. (författare)
  • The GALAH survey : properties of the Galactic disc(s) in the solar neighbourhood
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 476:4, s. 5216-5232
  • Tidskriftsartikel (refereegranskat)abstract
    • Using data from the GALAH pilot survey, we determine properties of the Galactic thin and thick discs near the solar neighbourhood. The data cover a small range of Galactocentric radius (7.9 less than or similar to R-GC less than or similar to 9.5 kpc), but extend up to 4 kpc in height from the Galactic plane, and several kpc in the direction of Galactic anti-rotation (at longitude 260 degrees <= l <= 280 degrees). This allows us to reliably measure the vertical density and abundance profiles of the chemically and kinematically defined 'thick' and 'thin' discs of the Galaxy. The thin disc (low-alpha population) exhibits a steep negative vertical metallicity gradient, at d[M/H]/dz = -0.18 +/- 0.01 dex kpc(-1), which is broadly consistent with previous studies. In contrast, its vertical alpha-abundance profile is almost flat, with a gradient of d[alpha/M]/dz = 0.008 +/- 0.002 dex kpc(-1). The steep vertical metallicity gradient of the low-a population is in agreement with models where radial migration has a major role in the evolution of the thin disc. The thick disc (high-alpha population) has a weaker vertical metallicity gradient d[M/H]/dz = -0.058 +/- 0.003 dex kpc(-1). The aabundance of the thick disc is nearly constant with height, d[alpha/M]/dz = 0.007 +/- 0.002 dex kpc(-1). The negative gradient in metallicity and the small gradient in [alpha/M] indicate that the high-alpha population experienced a settling phase, but also formed prior to the onset of major Type I alpha supernova enrichment. We explore the implications of the distinct alpha-enrichments and narrow [alpha/M] range of the sub-populations in the context of thick disc formation.
  •  
14.
  • Piffl, T., et al. (författare)
  • Constraining the Galaxy's dark halo with RAVE stars
  • 2014
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 445, s. 3133-3151
  • Tidskriftsartikel (refereegranskat)
  •  
15.
  • Povinec, Pavel, et al. (författare)
  • Reference material for radionuclides in sediment. IAEA-384 (Fangataufa lagoon sediment).
  • 2007
  • Ingår i: Journal of Radioanalytical and Nuclear Chemistry. - Dordrecht : Springer. - 0236-5731 .- 1588-2780. ; 273:2, s. 383-393
  • Tidskriftsartikel (refereegranskat)abstract
    • A reference material designed for the determination of anthropogenic and natural radionuclides in sediment, IAEA-384 (Fangataufa Lagoon sediment), is described and the results of certification are presented. The material has been certified for 8 radionuclides (40K, 60Co, 155Eu, 230Th, 238U, 238Pu, 239+240Pu and 241Am). Information values are given for 12 radionuclides (90Sr, 137Cs, 210Pb (210Po), 226Ra, 228Ra, 232Th, 234U, 235U, 239Pu, 240Pu and 241Pu). Less reported radionuclides include 228Th, 236U, 239Np and 242Pu. The reference material may be used for quality management of radioanalytical laboratories engaged in the analysis of radionuclides in the environment, as well as for the development and validation of analytical methods and for training purposes. The material is available from IAEA in 100 g units.
  •  
16.
  • Binney, J., et al. (author)
  • New distances to RAVE stars
  • 2014
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 437, s. 351-370
  • Journal article (peer-reviewed)
  •  
17.
  • Kordopatis, G., et al. (author)
  • In the thick of it: metal-poor disc stars in RAVE
  • 2013
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 436, s. 3231-3246
  • Journal article (peer-reviewed)
  •  
18.
  •  
19.
  • Antoja, T., et al. (author)
  • Asymmetric metallicity patterns in the stellar velocity space with RAVE
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 601
  • Journal article (peer-reviewed)abstract
    • Context. The chemical abundances of stars encode information on their place and time of origin. Stars formed together in e.g. a cluster, should present chemical homogeneity. Also disk stars influenced by the effects of the bar and the spiral arms might have distinct chemical signatures depending on the type of orbit that they follow, e.g. from the inner versus outer regions of the Milky Way.Aims. We explore the correlations between velocity and metallicity and the possible distinct chemical signatures of the velocity over-densities of the local Galactic neighbourhood.Methods. We use the large spectroscopic survey RAVE and the Geneva Copenhagen Survey. We compare the metallicity distribution of regions in the velocity plane (upsilon(R), upsilon(phi)) with that of their symmetric counterparts (-upsilon(R), upsilon(phi)). We expect similar metallicity distributions if there are no tracers of a sub-population (e.g. a dispersed cluster, accreted stars), if the disk of the Galaxy is axisymmetric, and if the orbital effects of the bar and the spiral arms are weak.Results. We find that the metallicity-velocity space of the solar neighbourhood is highly patterned. A large fraction of the velocity plane shows differences in the metallicity distribution when comparing symmetric upsilon(R) regions. The typical differences in the median metallicity are of 0 : 05 dex with statistical significant of at least 95% confidence, and with values up to 0 : 6 dex. For stars with low azimuthal velocity v(phi), the ones moving outwards. These include stars in the Hercules and Hyades moving groups and other velocity branch-like structures. For higher v(phi), the stars moving inwards have higher metallicity than those moving outwards. We have also discovered a positive gradient in v(phi) with resp ect to metallicity at high metallicities, apart from the two known positive and negative gradients for the thick and thin disks.Conclusions. The most likely interpretation of the metallicity asymmetry is that it is mainly due to the orbital effects of the Galactic bar and the radial metallicity gradient of the disk. We present a simulation that supports this idea.
  •  
20.
  • Bland-Hawthorn, Joss, et al. (author)
  • The GALAH survey and Gaia DR2 : dissecting the stellar disc's phase space by age, action, chemistry, and location
  • 2019
  • In: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 486:1, s. 1167-1191
  • Journal article (peer-reviewed)abstract
    • We use the second data releases of the European Space Agency Gaia astrometric survey and the high-resolution Galactic Archaeology with HERMES (GALAH) spectroscopic survey to analyse the structure of our Galaxy's disc components. With GALAH, we separate the alpha-rich and alpha-poor discs (with respect to Fe), which are superposed in both position and velocity space, and examine their distributions in action space. We study the distribution of stars in the zV(z) phase plane, for both V-phi and V-R, and recover the remarkable 'phase spiral' discovered by Gaia. We identify the anticipated quadrupole signature in zV(z) of a tilted velocity ellipsoid for stars above and belowtheGalactic plane. By connecting ourwork with earlier studies, we show that the phase spiral is likely to extend well beyond the narrow solar neighbourhood cylinder in which it was found. The phase spiral is a signature of corrugated waves that propagate through the disc, and the associated non-equilibrium phase mixing. The radially asymmetric distribution of stars involved in the phase spiral reveals that the corrugation, which is mostly confined to the alpha-poor disc, grows in z-amplitude with increasing radius. We present new simulations of tidal disturbance of the Galactic disc by the Sagittarius (Sgr) dwarf. The effect on the zV(z) phase plane lasts greater than or similar to 2 Gyr, but a subsequent disc crossing wipes out the coherent structure. We find that the phase spiral was excited less than or similar to 0.5 Gyr ago by an object like Sgr with total mass similar to 3 x 10(10) M-circle dot (stripped down from similar to 5 x 10(10) M-circle dot when it first entered the halo) passing through the plane.
  •  
21.
  • Buder, Sven, et al. (author)
  • The GALAH plus survey : Third data release
  • 2021
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 506:1, s. 150-201
  • Journal article (peer-reviewed)abstract
    • The ensemble of chemical element abundance measurements for stars, along with precision distances and orbit properties, provides high-dimensional data to study the evolution of the Milky Way. With this third data release of the Galactic Archaeology with HERMES (GALAH) survey, we publish 678 423 spectra for 588 571 mostly nearby stars (81.2 per cent of stars are within <2 kpc), observed with the HERMES spectrograph at the Anglo-Australian Telescope. This release (hereafter GALAH+ DR3) includes all observations from GALAH Phase 1 (bright, main, and faint survey, 70 per cent), K2-HERMES (17 per cent), TESS-HERMES (5 per cent), and a subset of ancillary observations (8 per cent) including the bulge and >75 stellar clusters. We derive stellar parameters T-eff, logg, [Fe/H], v(mic), v(broad), and v(rad) using our modified version of the spectrum synthesis code Spectroscopy Made Easy (SME) and 1D MARCS model atmospheres. We break spectroscopic degeneracies in our spectrum analysis with astrometry from Gaia DR2 and photometry from 2MASS. We report abundance ratios [X/Fe] for 30 different elements (11 of which are based on non-LTE computations) covering five nucleosynthetic pathways. We describe validations for accuracy and precision, flagging of peculiar stars/measurements and recommendations for using our results. Our catalogue comprises 65 per cent dwarfs, 34 per cent giants, and 1 per cent other/unclassified stars. Based on unflagged chemical composition and age, we find 62 per cent young low-alpha, 9 per cent young high-alpha, 27 per cent old high-alpha, and 2 per cent stars with [Fe/H] <= -1. Based on kinematics, 4 per cent are halo stars. Several Value-Added-Catalogues, including stellar ages and dynamics, updated after Gaia eDR3, accompany this release and allow chrono-chemodynamic analyses, as we showcase.
  •  
22.
  • Buder, Sven, et al. (author)
  • The GALAH Survey : second data release
  • 2018
  • In: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 478:4, s. 4513-4552
  • Journal article (peer-reviewed)abstract
    • The Galactic Archaeology with HERMES (GALAH) survey is a large-scale stellar spectroscopic survey of the Milky Way, designed to deliver complementary chemical information to a large number of stars covered by the Gaia mission. We present the GALAH second public data release (GALAH DR2) containing 342 682 stars. For these stars, the GALAH collaboration provides stellar parameters and abundances for up to 23 elements to the community. Here we present the target selection, observation, data reduction, and detailed explanation of how the spectra were analysed to estimate stellar parameters and element abundances. For the stellar analysis, we have used a multistep approach. We use the physics-driven spectrum synthesis of Spectroscopy Made Easy (SME) to derive stellar labels (T-eff, log g, [Fe/H], [X/Fe], v(mic), vsin i, AKS) for a representative training set of stars. This information is then propagated to the whole sample with the data-driven method of The Cannon. Special care has been exercised in the spectral synthesis to only consider spectral lines that have reliable atomic input data and are little affected by blending lines. Departures from local thermodynamic equilibrium (LTE) are considered for several key elements, including Li, O, Na, Mg, Al, Si, and Fe, using 1D MARCS stellar atmosphere models. Validation tests including repeat observations, Gaia benchmark stars, open and globular clusters, and K2 asteroseismic targets lend confidence to our methods and results. Combining the GALAH DR2 catalogue with the kinematic information from Gaia will enable a wide range of Galactic Archaeology studies, with unprecedented detail, dimensionality, and scope.
  •  
23.
  • Buder, Sven, et al. (author)
  • The GALAH+ survey : Third data release
  • 2021
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 506:1, s. 150-201
  • Journal article (peer-reviewed)abstract
    • The ensemble of chemical element abundance measurements for stars, along with precision distances and orbit properties, provides high-dimensional data to study the evolution of the Milky Way. With this third data release of the Galactic Archaeology with HERMES (GALAH) survey, we publish 678 423 spectra for 588 571 mostly nearby stars (81.2 per cent of stars are within <2 kpc), observed with the HERMES spectrograph at the Anglo-Australian Telescope. This release (hereafter GALAH+ DR3) includes all observations from GALAH Phase 1 (bright, main, and faint survey, 70 per cent), K2-HERMES (17 per cent), TESS-HERMES (5 per cent), and a subset of ancillary observations (8 per cent) including the bulge and >75 stellar clusters. We derive stellar parameters Teff, log g, [Fe/H], vmic, vbroad, and vrad using our modified version of the spectrum synthesis code Spectroscopy Made Easy (sme) and 1D marcs model atmospheres. We break spectroscopic degeneracies in our spectrum analysis with astrometry from Gaia DR2 and photometry from 2MASS. We report abundance ratios [X/Fe] for 30 different elements (11 of which are based on non-LTE computations) covering five nucleosynthetic pathways. We describe validations for accuracy and precision, flagging of peculiar stars/measurements and recommendations for using our results. Our catalogue comprises 65 per cent dwarfs, 34 per cent giants, and 1 per cent other/unclassified stars. Based on unflagged chemical composition and age, we find 62 per cent young low-α⁠, 9 per cent young high-α⁠, 27 per cent old high-α⁠, and 2 per cent stars with [Fe/H] ≤ −1. Based on kinematics, 4 per cent are halo stars. Several Value-Added-Catalogues, including stellar ages and dynamics, updated after Gaia eDR3, accompany this release and allow chrono-chemodynamic analyses, as we showcase.
  •  
24.
  • Pham, M. K., et al. (author)
  • Certified reference material for radionuclides in fish flesh sample IAEA-414 (mixed fish from the Irish Sea and North Sea)
  • 2006
  • In: Proceedings of the 15th International Conference on Radionuclide Metrology and its Applications (Applied Radiation and Isotopes). - Amsterdam : Elsevier BV. - 1872-9800 .- 0969-8043. ; 64:10-11, s. 1253-1259
  • Conference paper (peer-reviewed)abstract
    • A certified reference material (CRM) for radionuclides in fish sample IAEA-414 (mixed fish from the Irish Sea and North Seas) is described and the results of the certification process are presented. Nine radionuclides (K-40, Cs-137, Th-232, U-234, U-235, U-238, Pu-238, Pu239+240 and Am-241) were certified for this material. Information on massic activities with 95% confidence intervals is given for six other radionuclides (Sr-90, Pb-210(Po-210), Ra-226, Pu-239, Pu-240 Pu-241). Less frequently reported radionuclides (Tc-99, I-129, Th-228, Th-230 and Np-217) and information on some activity and mass ratios are also included. The CRM can be used for quality assurance/quality control of the analysis of radionuclides in fish sample, for the development and validation of analytical methods and for training purposes. The material is available from IAEA, Vienna, in 100 g units.
  •  
25.
  • Sharma, Sanjib, et al. (author)
  • Fundamental relations for the velocity dispersion of stars in the Milky Way
  • 2021
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 506:2, s. 1761-1776
  • Journal article (peer-reviewed)abstract
    • We explore the fundamental relations governing the radial and vertical velocity dispersions of stars in the Milky Way, from combined studies of complementary surveys including GALAH, LAMOST, APOGEE, the NASA Kepler and K2 missions, and Gaia DR2. We find that different stellar samples, even though they target different tracer populations and employ a variety of age estimation techniques, follow the same set of fundamental relations. We provide the clearest evidence to date that, in addition to the well-known dependence on stellar age, the velocity dispersions of stars depend on orbital angular momentum Lz, metallicity, and height above the plane |z|, and are well described by a multiplicatively separable functional form. The dispersions have a power-law dependence on age with exponents of 0.441 ± 0.007 and 0.251 ± 0.006 for σz and σR, respectively, and the power law is valid even for the oldest stars. For the solar neighbourhood stars, the apparent break in the power law for older stars, as seen in previous studies, is due to the anticorrelation of Lz with age. The dispersions decrease with increasing Lz until we reach the Sun’s orbital angular momentum, after which σz increases (implying flaring in the outer disc) while σR flattens. For a given age, the dispersions increase with decreasing metallicity, suggesting that the dispersions increase with birth radius. The dispersions also increase linearly with |z|. The same set of relations that work in the solar neighbourhood also work for stars between 3 < R/kpc < 20. Finally, the high-[α/Fe] stars follow the same relations as the low-[α/Fe] stars.
  •  
26.
  • Sharma, Sanjib, et al. (author)
  • The K2-HERMES Survey : age and metallicity of the thick disc
  • 2019
  • In: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 490:4, s. 5335-5352
  • Journal article (peer-reviewed)abstract
    • Asteroseismology is a promising tool to study Galactic structure and evolution because it can probe the ages of stars. Earlier attempts comparing seismic data from the Kepler satellite with predictions from Galaxy models found that the models predicted more low-mass stars compared to the observed distribution of masses. It was unclear if the mismatch was due to inaccuracies in the Galactic models, or the unknown aspects of the selection function of the stars. Using new data from the K2 mission, which has a well-defined selection function, we find that an oldmetal-poor thick disc, as used in previous Galactic models, is incompatible with the asteroseismic information. We use an importance-sampling framework, which takes the selection function into account, to fit for the metallicities of a population synthesis model using spectroscopic data. We show that spectroscopic measurements of [Fe/H] and [alpha/Fe] elemental abundances from the GALAH survey indicate a mean metallicity of log (Z/Z(circle dot)) = -0.16 for the thick disc. Here Z is the effective solar-scaled metallicity, which is a function of [Fe/H] and [alpha/Fe]. With the revised disc metallicities, for the first time, the theoretically predicted distribution of seismic masses show excellent agreement with the observed distribution of masses. This indirectly verifies that the asteroseismic mass scaling relation is good to within five per cent. Assuming the asteroseismic scaling relations are correct, we estimate the mean age of the thick disc to be about 10 Gyr, in agreement with the traditional idea of an old alpha-enhanced thick disc.
  •  
27.
  • Buder, Sven, et al. (author)
  • The GALAH Survey : chemical tagging and chrono-chemodynamics of accreted halo stars with GALAH+DR3 and Gaia eDR3
  • 2022
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 510:2, s. 2407-2436
  • Journal article (peer-reviewed)abstract
    • Since the advent of Gaia astrometry, it is possible to identify massive accreted systems within the Galaxy through their unique dynamical signatures. One such system, Gaia-Sausage-Enceladus (GSE), appears to be an early ‘building block’ given its virial mass >1010M⊙ at infall (z ∼ 1−3). In order to separate the progenitor population from the background stars, we investigate its chemical properties with up to 30 element abundances from the GALAH+ Survey Data Release 3 (DR3). To inform our choice of elements for purely chemically selecting accreted stars, we analyse 4164 stars with low-α abundances and halo kinematics. These are most different to the Milky Way stars for abundances of Mg, Si, Na, Al, Mn, Fe, Ni, and Cu. Based on the significance of abundance differences and detection rates, we apply Gaussian mixture models to various element abundance combinations. We find the most populated and least contaminated component, which we confirm to represent GSE, contains 1049 stars selected via [Na/Fe] versus [Mg/Mn] in GALAH+ DR3. We provide tables of our selections and report the chrono-chemodynamical properties (age, chemistry, and dynamics). Through a previously reported clean dynamical selection of GSE stars, including 30<√JR/kpckms−1<55⁠, we can characterize an unprecedented 24 abundances of this structure with GALAH+ DR3. With our chemical selection we characterize the dynamical properties of the GSE, for example mean √JR/kpckms−1=26+9−14⁠. We find only (29±1) per cent of the GSE stars within the clean dynamical selection region. Our methodology will improve future studies of accreted structures and their importance for the formation of the Milky Way.
  •  
28.
  • Kunder, Andrea, et al. (author)
  • THE RADIAL VELOCITY EXPERIMENT (RAVE) : FIFTH DATA RELEASE
  • 2017
  • In: The Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 153:2
  • Journal article (peer-reviewed)abstract
    • Data Release 5 (DR5) of the Radial Velocity Experiment (RAVE) is the fifth data release from a magnitude-limited (9 < I < 12) survey of stars randomly selected in the Southern Hemisphere. The RAVE medium-resolution spectra (R ∼ 7500) covering the Ca-triplet region (8410-8795 A) span the complete time frame from the start of RAVE observations in 2003 to their completion in 2013. Radial velocities from 520,781 spectra of 457,588 unique stars are presented, of which 255,922 stellar observations have parallaxes and proper motions from the Tycho-Gaia astrometric solution in Gaia DR1. For our main DR5 catalog, stellar parameters (effective temperature, surface gravity, and overall metallicity) are computed using the RAVE DR4 stellar pipeline, but calibrated using recent K2 Campaign 1 seismic gravities and Gaia benchmark stars, as well as results obtained from high-resolution studies. Also included are temperatures from the Infrared Flux Method, and we provide a catalog of red giant stars in the dereddened color - (J Ks) 0 interval (0.50, 0.85) for which the gravities were calibrated based only on seismology. Further data products for subsamples of the RAVE stars include individual abundances for Mg, Al, Si, Ca, Ti, Fe, and Ni, and distances found using isochrones. Each RAVE spectrum is complemented by an error spectrum, which has been used to determine uncertainties on the parameters. The data can be accessed via the RAVE Web site or the VizieR database.
  •  
29.
  • Malbet, F., et al. (author)
  • Faint objects in motion: the new frontier of high precision astrometry
  • 2021
  • In: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 51:3, s. 845-886
  • Journal article (peer-reviewed)abstract
    • Sky survey telescopes and powerful targeted telescopes play complementary roles in astronomy. In order to investigate the nature and characteristics of the motions of very faint objects, a flexibly-pointed instrument capable of high astrometric accuracy is an ideal complement to current astrometric surveys and a unique tool for precision astrophysics. Such a space-based mission will push the frontier of precision astrometry from evidence of Earth-mass habitable worlds around the nearest stars, to distant Milky Way objects, and out to the Local Group of galaxies. As we enter the era of the James Webb Space Telescope and the new ground-based, adaptive-optics-enabled giant telescopes, by obtaining these high precision measurements on key objects that Gaia could not reach, a mission that focuses on high precision astrometry science can consolidate our theoretical understanding of the local Universe, enable extrapolation of physical processes to remote redshifts, and derive a much more consistent picture of cosmological evolution and the likely fate of our cosmos. Already several missions have been proposed to address the science case of faint objects in motion using high precision astrometry missions: NEAT proposed for the ESA M3 opportunity, micro-NEAT for the S1 opportunity, and Theia for the M4 and M5 opportunities. Additional new mission configurations adapted with technological innovations could be envisioned to pursue accurate measurements of these extremely small motions. The goal of this White Paper is to address the fundamental science questions that are at stake when we focus on the motions of faint sky objects and to briefly review instrumentation and mission profiles.
  •  
30.
  • Norris, J. E., et al. (author)
  • The most metal-poor stars. IV. the two populations with [Fe/H] ≲ -3.0
  • 2013
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 762:1, s. 28-
  • Journal article (peer-reviewed)abstract
    • We discuss the carbon-normal and carbon-rich populations of Galactic halo stars having [Fe/H] ≲ -3.0, utilizing chemical abundances from high-resolution, high signal-to-noise model-atmosphere analyses. The C-rich population represents ∼28% of stars below [Fe/H] = -3.1, with the present C-rich sample comprising 16 CEMP-no stars, and two others with [Fe/H] ∼ -5.5 and uncertain classification. The population is O-rich ([O/Fe] ≳ +1.5); the light elements Na, Mg, and Al are enhanced relative to Fe in half the sample; and for Z > 20 (Ca) there is little evidence for enhancements relative to solar values. These results are best explained in terms of the admixing and processing of material from H-burning and He-burning regions as achieved by nucleosynthesis in zero-heavy-element models in the literature of "mixing and fallback" supernovae (SNe); of rotating, massive, and intermediate-mass stars; and of Type II SNe with relativistic jets. The available (limited) radial velocities offer little support for the C-rich stars with [Fe/H] < -3.1 being binary. More data are required before one could conclude that binarity is key to an understanding of this population. We suggest that the C-rich and C-normal populations result from two different gas cooling channels in the very early universe of material that formed the progenitors of the two populations. The first was cooling by fine-structure line transitions of C II and O I (to form the C-rich population); the second, while not well defined (perhaps dust-induced cooling?), led to the C-normal group. In this scenario, the C-rich population contains the oldest stars currently observed.
  •  
31.
  • Quétel, C. R., et al. (author)
  • Methylmercury in tuna: demonstrating measurement capabilities and evaluating comparability of results worldwide from the CCQM P-39 comparison
  • 2005
  • In: Journal of Analytical Atomic Spectrometry. - : Royal Society of Chemistry (RSC). - 0267-9477 .- 1364-5544. ; 20, s. 1058-66
  • Journal article (peer-reviewed)abstract
    • Six metrology institutes (NMIs) representing at the Comité International des Poids et Mesures (CIPM) 4 Member States of the Metre Convention and 2 international organisations, and 8 expert laboratories selected outside CIPM have compared their capabilities to quantitatively measure methylmercury (MeHg) in a prepared tuna material containing approximately 4.3 mg kg–1 Hg. This comparison was the object of the CIPM–Comité Consultatif pour la Quantité de Matière (CCQM) Pilot Study 39, organised by the Institute for Reference Materials and Measurements (IRMM), from the European Commission—Joint Research Centre. Beside the test material itself, a bottle of the BCR-464 tuna Certified Reference Material (CRM) and an ampoule of IRMM-670, a 202Hg isotope enriched MeHg candidate isotopic CRM, were distributed to all participants, who were free to apply the measurement strategy of their choice. Four, including 1 NMI, relied on external calibration or the method of standard additions, whereas the other 10 implemented an isotope dilution mass spectrometry (IDMS) approach and chose to use the IRMM-670 for their measurements. Alkaline digestion at room temperature (with manual shaking) or high temperature (under sonication, oven or hot plate conditions) was employed by most participants, with hydrochloric acid leaching the second most popular choice. Alkylation (4 phenylations, 4 ethylations and 3 propylations) in the aqueous phase was preferred by a large majority over butylation by the Grignard reaction. All participants were requested to estimate the uncertainty associated with their results and 9 out of 14 stated relative combined uncertainties below 6%(k= 2). Despite this apparent consensus, the perception of which factor caused the largest contribution to this estimation differed among participants because of the differences in the analytical methodologies deployed but also because of wide differences of the concepts of uncertainty estimation. The mixture mode(MM) median, calculated also from the measurement uncertainties stated by the participants, was 1.967 ± 0.204 × 10–5 mol kg–1(95% confidence). Twelve of the results were re-grouped within a range of less than 0.3 × 10–5 mol kg–1(MM median = 1.967 ± 0.162 × 10–5 mol kg–1, 95% confidence): they nearly all (1 exception) overlapped with each other within k= 2 stated uncertainties. For the other 2 results the uncertainty seemed to have been particularly underestimated as they lay, respectively, at more than 20% above and less than –40% below the overall average. The relative standard deviation of the results of 9 laboratories out of the 10 that applied IDMS was about 2.6%. It can be assumed from the degree of equivalence shown by 12 out of 14 study participants that, at present, laboratories worldwide are potentially able to supply accurate results for MeHg in fish-type matrices (containing about 2 × 10–5 mol kg–1) within ±10% uncertainty. This encouraging outcome permitted scheduling of a follow-up CCQM-K43 key comparison for a lower MeHg content level in salmon tissues.
  •  
32.
  • Zucker, Daniel B., et al. (author)
  • The GALAH Survey : No Chemical Evidence of an Extragalactic Origin for the Nyx Stream
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 912:2
  • Journal article (peer-reviewed)abstract
    • The results from the ESA Gaia astrometric mission and deep photometric surveys have revolutionized our knowledge of the Milky Way. There are many ongoing efforts to search these data for stellar substructure to find evidence of individual accretion events that built up the Milky Way and its halo. One of these newly identified features, called Nyx, was announced as an accreted stellar stream traveling in the plane of the disk. Using a combination of elemental abundances and stellar parameters from the GALAH and Apache Point Observatory Galactic Evolution Experiment (APOGEE) surveys, we find that the abundances of the highest likelihood Nyx members are entirely consistent with membership of the thick disk, and inconsistent with a dwarf galaxy origin. We conclude that the postulated Nyx stream is most probably a high-velocity component of the Milky Way's thick disk. With the growing availability of large data sets including kinematics, stellar parameters, and detailed abundances, the probability of detecting chance associations increases, and hence new searches for substructure require confirmation across as many data dimensions as possible.
  •  
33.
  • Feltzing, Sofia, et al. (author)
  • The Faint Optical Stellar Luminosity Function in the Ursa Minor Dwarf Spheroidal Galaxy
  • 1999
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X. ; 516:1, s. 17-20
  • Journal article (peer-reviewed)abstract
    • Analyses of their internal stellar kinematics imply that the dwarf spheroidal (dSph) companion galaxies to the Milky Way are among the most dark matter-dominated systems known. Should there be significant dark matter in the form of faint stars in these systems, the stellar luminosity function must be very different from that of a similar metallicity globular cluster, for which there is no evidence for dark matter. We present the faint stellar luminosity function in the Ursa Minor dSph, down to a luminosity corresponding to ~0.45 M_solar, derived from new deep Hubble Space Telescope/WFPC2 data. We find a remarkable similarity between this luminosity function, and inferred initial mass function, and those of the globular cluster M92, a cluster of similar age and metallicity to the Ursa Minor dSph.
  •  
34.
  • Hawarden, Timothy G., et al. (author)
  • Critical science with the largest telescopes: science drivers for a 100m ground-based optical-IR telescope
  • 2003
  • In: Future Giant Telescopes (Proceedings of the SPIE). - : SPIE. - 081944619X ; 4840, s. 299-308
  • Conference paper (peer-reviewed)abstract
    • Extremely large filled-aperture ground-based optical-IR telescopes, or ELTs, ranging from 20 to 100m in diameter, are now being proposed. The all-important choice of the aperture must clearly be driven by the potential science offered. We here highlight science goals from the Leiden Workshop in May 2001 suggesting that for certain critical observations the largest possible aperture - assumed to be 100m (theproposed European OverWhelmingly Large telescope (OWL) - is strongly tobe desired. Examples from a long list include: COSMOLOGY: Identifying the first sources of ionisation in the universe, out to z >=14 Identifying and studying the first generation of dusty galaxies More speculatively, observing the formation of the laws of physics, via the evolution of the fundamental physical contants in the very early Universe, by high-resolution spectroscopy of very distant quasars. NEARER GALAXIES: Determining detailed star-formation histories of galaxies out to the Virtgo Cluster, and hence for all major galaxy types (not just those available close to the Local Group of galaxies). THE SOLAR SYSTEM: A 100-m telescope would do the work of a flotilla of fly-by space probes for investigations ranging from the evolution ofplanetary sutfaces and atmospheres to detailed surface spectroscopy of Kuiper Belt Objects. (Such studies could easily occupy it full-time.) EARTHLIKE PLANETS OF NEARBY STARS: A prospect so exciting as perhaps to justify the 100-m telescope on its own, is that of the direct detectionof earthlike planets of solar-type stars by imaging, out to at least 25 parsecs (80 light years) from the sun, followed by spectroscopic and photometric searches for the signature of life on the surfaces of nearer examples.
  •  
35.
  • Lin, Jane, et al. (author)
  • The GALAH survey : temporal chemical enrichment of the galactic disc
  • 2020
  • In: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 491:2, s. 2043-2056
  • Journal article (peer-reviewed)abstract
    • We present isochrone ages and initial bulk metallicities ([Fe/H](bulk), by accounting for diffusion) of 163 722 stars from the GALAH Data Release 2, mainly composed of main-sequence turn-off stars and subgiants (7000 K > T-eff > 4000 K and log g > 3 dex). The local age-metallicity relationship (AMR) is nearly flat but with significant scatter at all ages; the scatter is even higher when considering the observed surface abundances. After correcting for selection effects, the AMR appears to have intrinsic structures indicative of two star formation events, which we speculate are connected to the thin and thick discs in the solar neighbourhood. We also present abundance ratio trends for 16 elements as a function of age, across different [Fe/H](bulk) bins. In general, we find the trends in terms of [X/Fe] versus age from our far larger sample to be compatible with studies based on small (similar to 100 stars) samples of solar twins, but we now extend them to both sub- and supersolar metallicities. The a-elements show differing behaviour: the hydrostatic alpha-elements O and Mg show a steady decline with time for all metallicities, while the explosive alpha-elements Si, Ca, and Ti are nearly constant during the thin-disc epoch (ages less than or similar to 12 Gyr). The s-process elements Y and Ba show increasing [X/Fe] with time while the r-process element Eu has the opposite trend, thus favouring a primary production from sources with a short time delay such as core-collapse supernovae over long-delay events such as neutron star mergers.
  •  
36.
  • Rojas-Arriagada, A., et al. (author)
  • The Gaia-ESO Survey: metallicity and kinematic trends in the Milky Way bulge
  • 2014
  • In: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 569
  • Journal article (peer-reviewed)abstract
    • Aims. Observational studies of the Milky Way bulge are providing increasing evidence of its complex chemo-dynamical patterns and morphology. Our intent is to use the iDR1 Gaia-ESO Survey (GES) data set to provide new constraints on the metallicity and kinematic trends of the Galactic bulge, exploring the viability of the currently proposed formation scenarios. Methods. We analyzed the stellar parameters and radial velocities of similar to 1200 stars in five bulge fields wich are located in the region -10 degrees < / < 7 degrees and -10 degrees < b < -4 degrees. We use VISTA Variables in the Via Lactea (VVV) photometry to verify the internal consistency of the atmospheric parameters recommended by the consortium. As a by-product, we obtained reddening values using a semi-empirical Tdf -color calibration. We constructed the metallicity distribution functions and combined them with photometric and radial velocity data to analyze the properties of the stellar populations in the observed fields. Results. From a Gaussian decomposition of the metallicity distribution functions, we unveil a clear bimodality in all fields, with the relative size of components depending of the specific position on the sky. In agreement with some previous studies, we find a mild gradient along the minor axis (-0.05 dex/deg between b = -6 degrees and b = -10 degrees) that arises from the varying proportion of metal-rich and metal-poor components. The number of metal-rich stars fades in favor of the metal-poor stars with increasing b. The K-magnitude distribution of the metal-rich population splits into two peaks for two of the analyzed fields that intersects the near and far branches of the X-shaped bulge structure. In addition, two lateral fields at (l,b) = (7, -9) and (l, b) = (-10, 8) present contrasting characteristics. In the former, the metallicity distribution is dominated by metal-rich stars, while in the latter it presents a mix of a metal-poor population and and a metal-intermediate one, of nearly equal sizes. Finally, we find systematic differences in the velocity dispersion between the metal-rich and the metal-poor components of each field. Conclusions. The iDR I bulge data show chemo-dynamical distributions that are consistent with varying proportions of stars belonging to (i) a metal-rich boxy/peanut X-shaped component, with bar-like kinematics; and (ii) a metal-poor more extended rotating structure with a higher velocity dispersion that dominates far from the Galactic plane. These first GES data already allow studying the detailed spatial dependence of the Galactic bulge populations, thanks to the analysis of individual fields with relatively high statistics.
  •  
37.
  • Simpson, Jeffrey D., et al. (author)
  • The GALAH survey : accreted stars also inhabit the Spite plateau
  • 2021
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 507:1, s. 43-54
  • Journal article (peer-reviewed)abstract
    • The European Space Agency (ESA) Gaia mission has enabled the remarkable discovery that a large fraction of the stars near the solar neighbourhood are debris from a single in-falling system, the so-called Gaia-Sausage-Enceladus (GSE). This discovery provides astronomers for the first time with a large cohort of easily observable, unevolved stars that formed in a single extragalactic environment. Here we use these stars to investigate the ‘Spite plateau’ – the near-constant lithium abundance observed in unevolved metal-poor stars across a wide range of metallicities (−3 < [Fe/H] < −1). Our aim is to test whether individual galaxies could have different Spite plateaus – e.g. the interstellar medium could be more depleted in lithium in a lower galactic mass system due to it having a smaller reservoir of gas. We identified 93 GSE dwarf stars observed and analysed by the GALactic Archaeology with HERMES (GALAH) survey as part of its Data Release 3 (DR3). Orbital actions were used to select samples of GSE stars, and comparison samples of halo and disc stars. We find that the GSE stars show the same lithium abundance as other likely accreted stars and in situ Milky Way stars. Formation environment leaves no imprint on lithium abundances. This result fits within the growing consensus that the Spite plateau, and more generally the ‘cosmological lithium problem’ – the observed discrepancy between the amount of lithium in warm, metal-poor dwarf stars in our Galaxy, and the amount of lithium predicted to have been produced by big bang nucleosynthesis – is the result of lithium depletion processes within stars.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-37 of 37

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view