SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Yang SZ) "

Search: WFRF:(Yang SZ)

  • Result 1-35 of 35
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • 2021
  • swepub:Mat__t
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Chen, XD, et al. (author)
  • Non-invasive early detection of cancer four years before conventional diagnosis using a blood test
  • 2020
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 3475-
  • Journal article (peer-reviewed)abstract
    • Early detection has the potential to reduce cancer mortality, but an effective screening test must demonstrate asymptomatic cancer detection years before conventional diagnosis in a longitudinal study. In the Taizhou Longitudinal Study (TZL), 123,115 healthy subjects provided plasma samples for long-term storage and were then monitored for cancer occurrence. Here we report the preliminary results of PanSeer, a noninvasive blood test based on circulating tumor DNA methylation, on TZL plasma samples from 605 asymptomatic individuals, 191 of whom were later diagnosed with stomach, esophageal, colorectal, lung or liver cancer within four years of blood draw. We also assay plasma samples from an additional 223 cancer patients, plus 200 primary tumor and normal tissues. We show that PanSeer detects five common types of cancer in 88% (95% CI: 80–93%) of post-diagnosis patients with a specificity of 96% (95% CI: 93–98%), We also demonstrate that PanSeer detects cancer in 95% (95% CI: 89–98%) of asymptomatic individuals who were later diagnosed, though future longitudinal studies are required to confirm this result. These results demonstrate that cancer can be non-invasively detected up to four years before current standard of care.
  •  
8.
  •  
9.
  • 2021
  • swepub:Mat__t
  •  
10.
  •  
11.
  •  
12.
  • Du, QQ, et al. (author)
  • Generation of mega brown adipose tissue in adults by controlling brown adipocyte differentiation in vivo
  • 2022
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 119:40, s. e2203307119-
  • Journal article (peer-reviewed)abstract
    • Brown adipose tissue (BAT) is a highly specialized adipose tissue in its immobile location and size during the entire adulthood. In response to cold exposure and other β3-adrenoreceptor stimuli, BAT commits energy consumption by nonshivering thermogenesis (NST). However, the molecular machinery in controlling the BAT mass in adults is unknown. Here, we show our surprising findings that the BAT mass and functions can be manipulated in adult animals by controlling BAT adipocyte differentiation in vivo. Platelet-derived growth factor receptor α (PDGFα) expressed in BAT progenitor cells served a signaling function to avert adipose progenitor differentiation. Genetic and pharmacological loss-of-function of PDGFRα eliminated the differentiation barrier and permitted progenitor cell differentiation to mature and functional BAT adipocytes. Consequently, an enlarged BAT mass (megaBAT) was created by PDGFRα inhibition owing to increases of brown adipocyte numbers. Under cold exposure, a microRNA-485 (miR-485) was identified as a master suppressor of the PDGFRα signaling, and delivery of miR-485 also produced megaBAT in adult animals. Noticeably, megaBAT markedly improved global metabolism, insulin sensitivity, high-fat-diet (HFD)-induced obesity, and diabetes by enhancing NST. Together, our findings demonstrate that the adult BAT mass can be increased by blocking the previously unprecedented inhibitory signaling for BAT progenitor cell differentiation. Thus, blocking the PDGFRα for the generation of megaBAT provides an attractive strategy for treating obesity and type 2 diabetes mellitus (T2DM).
  •  
13.
  • Feng, HL, et al. (author)
  • Associations of timing of physical activity with all-cause and cause-specific mortality in a prospective cohort study
  • 2023
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 14:1, s. 930-
  • Journal article (peer-reviewed)abstract
    • There is a growing interest in the role of timing of daily behaviors in improving health. However, little is known about the optimal timing of physical activity to maximize health benefits. We perform a cohort study of 92,139 UK Biobank participants with valid accelerometer data and all-cause and cause-specific mortality outcomes, comprising over 7 years of median follow-up (638,825 person-years). Moderate-to-vigorous intensity physical activity (MVPA) at any time of day is associated with lower risks for all-cause, cardiovascular disease, and cancer mortality. In addition, compared with morning group (>50% of daily MVPA during 05:00-11:00), midday-afternoon (11:00-17:00) and mixed MVPA timing groups, but not evening group (17:00-24:00), have lower risks of all-cause and cardiovascular disease mortality. These protective associations are more pronounced among the elderly, males, less physically active participants, or those with preexisting cardiovascular diseases. Here, we show that MVPA timing may have the potential to improve public health.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  • Okawa, S, et al. (author)
  • Transcriptional synergy as an emergent property defining cell subpopulation identity enables population shift
  • 2018
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1, s. 2595-
  • Journal article (peer-reviewed)abstract
    • Single-cell RNA sequencing allows defining molecularly distinct cell subpopulations. However, the identification of specific sets of transcription factors (TFs) that define the identity of these subpopulations remains a challenge. Here we propose that subpopulation identity emerges from the synergistic activity of multiple TFs. Based on this concept, we develop a computational platform (TransSyn) for identifying synergistic transcriptional cores that determine cell subpopulation identities. TransSyn leverages single-cell RNA-seq data, and performs a dynamic search for an optimal synergistic transcriptional core using an information theoretic measure of synergy. A large-scale TransSyn analysis identifies transcriptional cores for 186 subpopulations, and predicts identity conversion TFs between 3786 pairs of cell subpopulations. Finally, TransSyn predictions enable experimental conversion of human hindbrain neuroepithelial cells into medial floor plate midbrain progenitors, capable of rapidly differentiating into dopaminergic neurons. Thus, TransSyn can facilitate designing strategies for conversion of cell subpopulation identities with potential applications in regenerative medicine.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  • Yang, SZ, et al. (author)
  • A Zeb2-miR-200c loop controls midbrain dopaminergic neuron neurogenesis and migration
  • 2018
  • In: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 1, s. 75-
  • Journal article (peer-reviewed)abstract
    • Zeb2 is a homeodomain transcription factor that plays pleiotropic functions during embryogenesis, but its role for midbrain dopaminergic (mDA) neuron development is unknown. Here we report that Zeb2 is highly expressed in progenitor cells in the ventricular zone of the midbrain floor plate and downregulated in postmitotic neuroblasts. Functional experiments show that Zeb2 expression in the embryonic ventral midbrain is dynamically regulated by a negative feedback loop that involves miR-200c. We also find that Zeb2 overexpression reduces the levels of CXCR4, NR4A2, and PITX3 in the developing ventral midbrain in vivo, resulting in migration and mDA differentiation defects. This phenotype was recapitulated by miR-200c knockdown, suggesting that the Zeb2-miR-200c loop prevents the premature differentiation of mDA progenitors into postmitotic cells and their migration. Together, our study establishes Zeb2 and miR-200c as critical regulators that maintain the balance between mDA progenitor proliferation and neurogenesis.
  •  
32.
  • Yang, SZ, et al. (author)
  • Cxcl12/Cxcr4 signaling controls the migration and process orientation of A9-A10 dopaminergic neurons
  • 2013
  • In: Development (Cambridge, England). - : The Company of Biologists. - 1477-9129 .- 0950-1991. ; 140:22, s. 4554-4564
  • Journal article (peer-reviewed)abstract
    • CXCL12/CXCR4 signaling has been reported to regulate three essential processes for the establishment of neural networks in different neuronal systems: neuronal migration, cell positioning and axon wiring. However, it is not known whether it regulates the development of A9-A10 tyrosine hydroxylase positive (TH+) midbrain dopaminergic (mDA) neurons. We report here that Cxcl12 is expressed in the meninges surrounding the ventral midbrain (VM), whereas CXCR4 is present in NURR1+ mDA precursors and mDA neurons from E10.5 to E14.5. CXCR4 is activated in NURR1+ cells as they migrate towards the meninges. Accordingly, VM meninges and CXCL12 promoted migration and neuritogenesis of TH+ cells in VM explants in a CXCR4-dependent manner. Moreover, in vivo electroporation of Cxcl12 at E12.5 in the basal plate resulted in lateral migration, whereas expression in the midline resulted in retention of TH+ cells in the IZ close to the midline. Analysis of Cxcr4-/- mice revealed the presence of VM TH+ cells with disoriented processes in the intermediate zone (IZ) at E11.5 and marginal zone (MZ) at E14. Consistently, pharmacological blockade of CXCR4 or genetic deletion of Cxcr4 resulted in an accumulation of TH+ cells in the lateral aspect of the IZ at E14, indicating that CXCR4 is required for the radial migration of mDA neurons in vivo. Altogether, our findings demonstrate that CXCL12/CXCR4 regulates the migration and orientation of processes in A9-A10 mDA neurons.
  •  
33.
  •  
34.
  •  
35.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-35 of 35

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view