SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Yaroslavtsev Alexander A.) "

Search: WFRF:(Yaroslavtsev Alexander A.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Menushenkov, A. P., et al. (author)
  • Direct evidence of real-space pairing in BaBiO3
  • 2024
  • In: Physical Review Research. - : American Physical Society. - 2643-1564. ; 6:2
  • Journal article (peer-reviewed)abstract
    • The parent compound BaBiO3 of bismuthate high-temperature superconductors (HTSCs) BaBi(Pb)O3 and Ba(K)BiO3 with perovskitelike structure exhibits unusual electronic and structural properties, which can be satisfactorily explained if we assume that all charge carriers are in the paired state. However, the prior experiments and the first-principle calculations only indirectly indicate the existence of paired charge carriers in BaBiO3. In this work, we report the direct evidence of initially paired electrons and holes in the upper antibonding Bi 6s-O 2p sigma* orbital of the neighboring octahedral complexes in the ground state of BaBiO3 using the time-resolved x-ray absorption spectroscopy (XAS) to monitor the electron dynamics after the femtosecond resonant 633 nm laser excitation. We observe strong changes in the oxygen K-edge XAS preedge region, defined by the Bi 6s-O 2p sigma* orbitals. We interpret them as a fast (<= 0.3 ps) breaking of charge carrier pairs and slower (0.3-0.8 ps) lattice rearrangement from the distorted monoclinic structure into the new metastable state with a cubic lattice, which persists at least up to 60 ps after the excitation. Analysis of the intermediate state at the fast excitation shows that the bond disproportionation and monoclinic distortion of BaBiO3 structure are energetically favorable due to the charge carrier pairing. Thus the compound BaBiO3 forms a new quantum state that we define as a local pair density wave. Taking into account a large number of similarities between bismuthate and cuprate high-temperature superconductors, we believe that our work will give a new impetus to understanding the nature of superconductivity in perovskite HTSCs.
  •  
2.
  • Engel, Robin Y., et al. (author)
  • Electron population dynamics in resonant non-linear x-ray absorption in nickel at a free-electron laser
  • 2023
  • In: Structural Dynamics. - : American Institute of Physics (AIP). - 2329-7778. ; 10:5
  • Journal article (peer-reviewed)abstract
    • Free-electron lasers provide bright, ultrashort, and monochromatic x-ray pulses, enabling novel spectroscopic measurements not only with femtosecond temporal resolution: The high fluence of their x-ray pulses can also easily enter the regime of the non-linear x-ray-matter interaction. Entering this regime necessitates a rigorous analysis and reliable prediction of the relevant non-linear processes for future experiment designs. Here, we show non-linear changes in the L-3-edge absorption of metallic nickel thin films, measured with fluences up to 60 J/cm(2). We present a simple but predictive rate model that quantitatively describes spectral changes based on the evolution of electronic populations within the pulse duration. Despite its simplicity, the model reaches good agreement with experimental results over more than three orders of magnitude in fluence, while providing a straightforward understanding of the interplay of physical processes driving the non-linear changes. Our findings provide important insights for the design and evaluation of future high-fluence free-electron laser experiments and contribute to the understanding of non-linear electron dynamics in x-ray absorption processes in solids at the femtosecond timescale.
  •  
3.
  • Zhou Hagström, Nanna, 1993-, et al. (author)
  • Megahertz-rate Ultrafast X-ray Scattering and Holographic Imaging at the European XFEL
  • Other publication (other academic/artistic)abstract
    • The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence, and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, we present the results from the first megahertz repetition rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL. We illustrate the experimental capabilities that the SCS instrument offers, resulting from the operation at MHz repetition rates and the availability of the novel DSSC 2D imaging detector. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative examples, providing an ideal test-bed for operation at megahertz rates. Nevertheless, our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range. 
  •  
4.
  • Zhou Hagström, Nanna, 1993-, et al. (author)
  • Megahertz-rate ultrafast X-ray scattering and holographic imaging at the European XFEL
  • 2022
  • In: Journal of Synchrotron Radiation. - : International Union of Crystallography (IUCr). - 0909-0495 .- 1600-5775. ; 29, s. 1454-1464
  • Journal article (peer-reviewed)abstract
    • The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, results from the first megahertz-repetition-rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL are presented. The experimental capabilities that the SCS instrument offers, resulting from the operation at megahertz repetition rates and the availability of the novel DSSC 2D imaging detector, are illustrated. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range.
  •  
5.
  • Ilyakov, I., et al. (author)
  • Terahertz-wave decoding of femtosecond extreme-ultraviolet light pulses
  • 2022
  • In: Optica. - : Optica Publishing Group. - 2334-2536. ; 9:5, s. 545-550
  • Journal article (peer-reviewed)abstract
    • In recent years, femtosecond extreme-ultraviolet (XUV) and x-ray pulses from free-electron lasers have developed into important probes to monitor processes and dynamics in matter on femtosecond-time and angstrom-length scales. With the rapid progress of versatile ultrafast x-ray spectroscopy techniques and more sophisticated data analysis tools, accurate single-pulse information on the arrival time, duration, and shape of the probing x-ray and XUV pulses becomes essential. Here, we demonstrate that XUV pulses can be converted into terahertz electromagnetic pulses using a spintronic terahertz emitter. We observe that the duration, arrival time, and energy of each individual XUV pulse is encoded in the waveform of the associated terahertz pulses, and thus can be readily deduced from single-shot terahertz time-domain detection.
  •  
6.
  • Khubbutdinov, Ruslan, et al. (author)
  • High spatial coherence and short pulse duration revealed by the Hanbury Brown and Twiss interferometry at the European XFEL
  • 2021
  • In: Structural Dynamics. - : American Institute of Physics (AIP). - 2329-7778. ; 8:4
  • Journal article (peer-reviewed)abstract
    • Second-order intensity interferometry was employed to study the spatial and temporal properties of the European X-ray Free-Electron Laser (EuXFEL). Measurements were performed at the soft x-ray Self-Amplified Spontaneous Emission (SASE3) undulator beamline at a photon energy of 1.2 keV in the Self-Amplified Spontaneous Emission (SASE) mode. Two high-power regimes of the SASE3 undulator settings, i.e., linear and quadratic undulator tapering at saturation, were studied in detail and compared with the linear gain regime. The statistical analysis showed an exceptionally high degree of spatial coherence up to 90% for the linear undulator tapering. Analysis of the measured data in spectral and spatial domains provided an average pulse duration of about 10 fs in our measurements. The obtained results will be valuable for the experiments requiring and exploiting short pulse duration and utilizing high coherence properties of the EuXFEL.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view