SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Yue Wyatt W.) "

Search: WFRF:(Yue Wyatt W.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kelly, John J., et al. (author)
  • Snapshots of actin and tubulin folding inside the TRiC chaperonin
  • 2022
  • In: Nature Structural and Molecular Biology. - : Springer Science and Business Media LLC. - 1545-9993 .- 1545-9985. ; 29:5, s. 420-429
  • Journal article (peer-reviewed)abstract
    • The integrity of a cell’s proteome depends on correct folding of polypeptides by chaperonins. The chaperonin TCP-1 ring complex (TRiC) acts as obligate folder for >10% of cytosolic proteins, including he cytoskeletal proteins actin and tubulin. Although its architecture and how it recognizes folding substrates are emerging from structural studies, the subsequent fate of substrates inside the TRiC chamber is not defined. We trapped endogenous human TRiC with substrates (actin, tubulin) and cochaperone (PhLP2A) at different folding stages, for structure determination by cryo-EM. The already-folded regions of client proteins are anchored at the chamber wall, positioning unstructured regions toward the central space to achieve their native fold. Substrates engage with different sections of the chamber during the folding cycle, coupled to TRiC open-and-close transitions. Further, the cochaperone PhLP2A modulates folding, acting as a molecular strut between substrate and TRiC chamber. Our structural snapshots piece together an emerging model of client protein folding within TRiC.
  •  
2.
  • Roberts, Neil A., et al. (author)
  • Lrig2 and Hpse2, mutated in urofacial syndrome, pattern nerves in the urinary bladder
  • 2019
  • In: Kidney International. - : ELSEVIER SCIENCE INC. - 0085-2538 .- 1523-1755. ; 95:5, s. 1138-1152
  • Journal article (peer-reviewed)abstract
    • Mutations in leucine-rich-repeats and immunoglobulin-likedomains 2 (LRIG2) or in heparanase 2 (HPSE2) cause urofacial syndrome, a devastating autosomal recessive disease of functional bladder outlet obstruction. It has been speculated that urofacial syndrome has a neural basis, but it is unknown whether defects in urinary bladder innervation are present. We hypothesized that urofacial syndrome features a peripheral neuropathy of the bladder. Mice with homozygous targeted Lrig2 mutations had urinary defects resembling those found in urofacial syndrome. There was no anatomical blockage of the outflow tract, consistent with a functional bladder outlet obstruction. Transcriptome analysis revealed differential expression of 12 known transcripts in addition to Lrig2, including 8 with established roles in neurobiology. Mice with homozygous mutations in either Lrig2 or Hpse2 had increased nerve density within the body of the urinary bladder and decreased nerve density around the urinary outflow tract. In a sample of 155 children with chronic kidney disease and urinary symptoms, we discovered novel homozygous missense LRIG2 variants that were predicted to be pathogenic in 2 individuals with non-syndromic bladder outlet obstruction. These observations provide evidence that a peripheral neuropathy is central to the pathobiology of functional bladder outlet obstruction in urofacial syndrome, and emphasize the importance of LRIG2 and heparanase 2 for nerve patterning in the urinary tract.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view