SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zanini N) "

Search: WFRF:(Zanini N)

  • Result 1-20 of 20
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bravo, L, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Tabiri, S, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Thomas, HS, et al. (author)
  • 2019
  • swepub:Mat__t
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Abele, H., et al. (author)
  • Particle physics at the European Spallation Source
  • 2023
  • In: Physics reports. - : Elsevier. - 0370-1573 .- 1873-6270. ; 1023, s. 1-84
  • Research review (peer-reviewed)abstract
    • Presently under construction in Lund, Sweden, the European Spallation Source (ESS) will be the world’s brightest neutron source. As such, it has the potential for a particle physics program with a unique reach and which is complementary to that available at other facilities. This paper describes proposed particle physics activities for the ESS. These encompass the exploitation of both the neutrons and neutrinos produced at the ESS for high precision (sensitivity) measurements (searches).
  •  
8.
  • Olalde, I., et al. (author)
  • The Beaker phenomenon and the genomic transformation of northwest Europe
  • 2018
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 555:7695, s. 190-196
  • Journal article (peer-reviewed)abstract
    • From around 2750 to 2500 bc, Bell Beaker pottery became widespread across western and central Europe, before it disappeared between 2200 and 1800 bc. The forces that propelled its expansion are a matter of long-standing debate, and there is support for both cultural diffusion and migration having a role in this process. Here we present genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans, including 226 individuals associated with Beaker-complex artefacts. We detected limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and thus exclude migration as an important mechanism of spread between these two regions. However, migration had a key role in the further dissemination of the Beaker complex. We document this phenomenon most clearly in Britain, where the spread of the Beaker complex introduced high levels of steppe-related ancestry and was associated with the replacement of approximately 90% of Britain's gene pool within a few hundred years, continuing the east-to-west expansion that had brought steppe-related ancestry into central and northern Europe over the previous centuries.
  •  
9.
  • Addazi, A., et al. (author)
  • New high-sensitivity searches for neutrons converting into antineutrons and/or sterile neutrons at the HIBEAM/NNBAR experiment at the European Spallation Source
  • 2021
  • In: Journal of Physics G. - : Institute of Physics Publishing (IOPP). - 0954-3899 .- 1361-6471. ; 48:7
  • Journal article (peer-reviewed)abstract
    • The violation of baryon number, , is an essential ingredient for the preferential creation of matter over antimatter needed to account for the observed baryon asymmetry in the Universe. However, such a process has yet to be experimentally observed. The HIBEAM/NNBAR program is a proposed two-stage experiment at the European Spallation Source to search for baryon number violation. The program will include high-sensitivity searches for processes that violate baryon number by one or two units: free neutron–antineutron oscillation () via mixing, neutron–antineutron oscillation via regeneration from a sterile neutron state (), and neutron disappearance (n → n'); the effective process of neutron regeneration () is also possible. The program can be used to discover and characterize mixing in the neutron, antineutron and sterile neutron sectors. The experiment addresses topical open questions such as the origins of baryogenesis and the nature of dark matter, and is sensitive to scales of new physics substantially in excess of those available at colliders. A goal of the program is to open a discovery window to neutron conversion probabilities (sensitivities) by up to three orders of magnitude compared with previous searches. The opportunity to make such a leap in sensitivity tests should not be squandered. The experiment pulls together a diverse international team of physicists from the particle (collider and low energy) and nuclear physics communities, while also including specialists in neutronics and magnetics.
  •  
10.
  •  
11.
  • Backman, Filip, 1991-, et al. (author)
  • The development of the NNBAR experiment
  • 2022
  • In: Journal of Instrumentation. - : Institute of Physics (IOP). - 1748-0221. ; 17:10
  • Journal article (peer-reviewed)abstract
    • The NNBAR experiment for the European Spallation Source will search for free neutrons converting to antineutrons with a sensitivity improvement of three orders of magnitude compared to the last such search. This paper describes progress towards a conceptual design report for NNBAR. The design of a moderator, neutron reflector, beamline, shielding and annihilation detector is reported. The simulations used form part of a model which will be used for optimisation of the experiment design and quantification of its sensitivity.
  •  
12.
  • Kattge, Jens, et al. (author)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • In: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Journal article (peer-reviewed)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
13.
  • Neuhausen, J., et al. (author)
  • Properties of irradiated LBE and Pb
  • 2015
  • In: Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies - 2015 Edition (NEA-7268). - : Nuclear Energy Agency of the OECD (NEA).
  • Book chapter (other academic/artistic)
  •  
14.
  • Poorter, Lourens, et al. (author)
  • Wet and dry tropical forests show opposite successional pathways in wood density but converge over time
  • 2019
  • In: Nature Ecology & Evolution. - : Nature Publishing Group. - 2397-334X. ; 3:6, s. 928-934
  • Journal article (peer-reviewed)abstract
    • Tropical forests are converted at an alarming rate for agricultural use and pastureland, but also regrow naturally through secondary succession. For successful forest restoration, it is essential to understand the mechanisms of secondary succession. These mechanisms may vary across forest types, but analyses across broad spatial scales are lacking. Here, we analyse forest recovery using 1,403 plots that differ in age since agricultural abandonment from 50 sites across the Neotropics. We analyse changes in community composition using species-specific stem wood density (WD), which is a key trait for plant growth, survival and forest carbon storage. In wet forest, succession proceeds from low towards high community WD (acquisitive towards conservative trait values), in line with standard successional theory. However, in dry forest, succession proceeds from high towards low community WD (conservative towards acquisitive trait values), probably because high WD reflects drought tolerance in harsh early successional environments. Dry season intensity drives WD recovery by influencing the start and trajectory of succession, resulting in convergence of the community WD over time as vegetation cover builds up. These ecological insights can be used to improve species selection for reforestation. Reforestation species selected to establish a first protective canopy layer should, among other criteria, ideally have a similar WD to the early successional communities that dominate under the prevailing macroclimatic conditions.
  •  
15.
  • Santoro, V., et al. (author)
  • DEVELOPMENT OF A HIGH INTENSITY NEUTRON SOURCE AT THE EUROPEAN SPALLATION SOURCE : THE HIGHNESS PROJECT
  • 2022
  • In: Proceedings of the 14th International Topical Meeting on Nuclear Applications of Accelerators, AccApp 2021, Embedded with the 2021 ANS Winter Meeting. - 9780894487842 ; , s. 11-20
  • Conference paper (peer-reviewed)abstract
    • The European Spallation Source (ESS), presently under construction in Lund, Sweden, is a multidisciplinary international laboratory that will operate the world’s most powerful pulsed neutron source. Supported by a 3M Euro Research and Innovation Action within the EU Horizon 2020 program, a design study (HighNESS) is now underway to develop a second neutron source below the spallation target. Compared to the first source, located above the spallation target and designed for high cold and thermal brightness, the new source will provide higher intensity, and a shift to longer wavelengths in the spectral regions of cold (2-20 Å), very cold (VCN, 10-120 Å), and ultra cold (UCN, > 500 Å) neutrons. The core of the second source will consist of a large liquid deuterium moderator to deliver a high flux of cold neutrons and to serve secondary VCN and UCN sources, for which different options are under study. The features of these new sources will boost several areas of condensed matter research and will provide unique opportunities in fundamental physics. Part of the HighNESS project is also dedicated to the development of future instruments that will make use of the new source and will complement the initial suite of instruments in construction at ESS. The HighNESS project started in October 2020. In this paper, the ongoing developments and the results obtained in the first year are described.
  •  
16.
  • Santoro, V., et al. (author)
  • HighNESS conceptual design report: Volume I
  • 2024
  • In: Journal of Neutron Research. - 1023-8166 .- 1477-2655. ; 25:3-4, s. 85-314
  • Journal article (peer-reviewed)abstract
    • The European Spallation Source, currently under construction in Lund, Sweden, is a multidisciplinary international laboratory. Once completed to full specifications, it will operate the world’s most powerful pulsed neutron source. Supported by a 3 million Euro Research and Innovation Action within the EU Horizon 2020 program, a design study (HighNESS) has been completed to develop a second neutron source located below the spallation target. Compared to the first source, designed for high cold and thermal brightness, the new source has been optimized to deliver higher intensity, and a shift to longer wavelengths in the spectral regions of cold (CN, 2–20 Å), very cold (VCN, 10–120 Å), and ultracold (UCN, >500 Å) neutrons. The second source comprises a large liquid deuterium moderator designed to produce CN and support secondary VCN and UCN sources. Various options have been explored in the proposed designs, aiming for world-leading performance in neutronics. These designs will enable the development of several new instrument concepts and facilitate the implementation of a high-sensitivity neutron-antineutron oscillation experiment (NNBAR). This document serves as the Conceptual Design Report for the HighNESS project, representing its final deliverable.
  •  
17.
  • Santoro, V., et al. (author)
  • HighNESS conceptual design report: Volume II. the NNBAR experiment.
  • 2024
  • In: Journal of Neutron Research. - 1023-8166 .- 1477-2655. ; 25:3-4, s. 315-406
  • Journal article (peer-reviewed)abstract
    • A key aim of the HighNESS project for the European Spallation Source is to enable cutting-edge particle physics experiments. This volume presents a conceptual design report for the NNBAR experiment. NNBAR would exploit a new cold lower moderator to make the first search in over thirty years for free neutrons converting to anti-neutrons. The observation of such a baryon-number-violating signature would be of fundamental significance and tackle open questions in modern physics, including the origin of the matter-antimatter asymmetry. This report shows the design of the beamline, supermirror focusing system, magnetic and radiation shielding, and anti-neutron detector necessary for the experiment. A range of simulation programs are employed to quantify the performance of the experiment and show how background can be suppressed. For a search with full background suppression, a sensitivity improvement of three orders of magnitude is expected, as compared with the previous search. Civil engineering studies for the NNBAR beamline are also shown, as is a costing model for the experiment.
  •  
18.
  • Santoro, V., et al. (author)
  • The HighNESS Project at the European Spallation Source : Current Status and Future Perspectives
  • 2024
  • In: Nuclear science and engineering. - 0029-5639 .- 1943-748X. ; 198:1, s. 31-63
  • Journal article (peer-reviewed)abstract
    • The European Spallation Source (ESS), presently under construction in Lund, Sweden, is a multidisciplinary international laboratory that, once completed at full specifications, will operate the world's most powerful pulsed neutron source. Supported by a 3 M Euro Research and Innovation Action within the European Union Horizon 2020 program, a design study (HighNESS) is now underway to develop a second neutron source located below the spallation target. Compared to the first source, which is located above the spallation target and designed for high cold and thermal brightness, the new source is being optimized to deliver higher intensity and a shift to longer wavelengths in the spectral regions of cold neutrons (CNs) (2 to 20 & Aring;), very cold neutrons (VCNs) (10 to 120 & Aring;), and ultracold neutrons (UCNs) (> 500 & Aring;). The second source consists of a large liquid deuterium moderator to deliver CNs and serve secondary VCN and UCN sources, for which different options are under study. These new sources will boost several areas of condensed matter research and will provide unique opportunities in fundamental physics. The HighNESS project is now entering its last year, and we are working toward the Conceptual Design Report of the ESS upgrade. In this paper, results obtained in the first 2 years, ongoing developments, and future perspectives are described.
  •  
19.
  • Wagner, R., et al. (author)
  • Design of an optimized nested-mirror neutron reflector for a NNBAR experiment
  • 2023
  • In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 1051
  • Journal article (peer-reviewed)abstract
    • The NNBAR experiment for the European Spallation Source will search for free neutrons converting to antineutrons with an expected sensitivity improvement of three orders of magnitude compared to the last such search. This paper describes both the simulations of a key component for the experiment, the neutron optical reflector and the expected gains in sensitivity.
  •  
20.
  • Zanini, Luca, et al. (author)
  • Measurement of Volatile Radionuclides Production and Release Yields followed by a Post-Irradiation Analysis of a Pb/Bi Filled Ta Target at ISOLDE
  • 2014
  • In: Nuclear Data Sheets. - : Elsevier BV. - 0090-3752. ; 119, s. 292-295
  • Journal article (peer-reviewed)abstract
    • A crucial requirement in the development of liquid-metal spallation neutron target is knowledge of the composition and amount of volatile radionuclides that are released from the target during operation. It is also important to know the total amount produced, which could be released if there was an accident. One type is the lead-bismuth eutectic (LBE) target where different radionuclides can be produced following interaction with a high-energy proton beam, notably noble gases (Ar, Kr, Xe isotopes) and other relative volatile isotopes such as Hg and At. The results of an irradiation experiment performed at ISOLDE on a LBE target are compared with predictions from the MCNPX code using the latest developments on the Liege Intranuclear Cascade model (INCL4.6) and the CEM03 model. The calculations are able to reproduce the mass distribution of the radioisotopes produced, including the At production, where there is a significant contribution from secondary reactions. Subsequently, a post-irradiation examination of the irradiated target was performed. Investigations of both the tantalum target structure, in particular the beam window, and the lead-bismuth eutectic were performed using several experimental techniques. No sign of severe irradiation damage, previously observed in other ISOLDE targets, was found.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-20 of 20
Type of publication
journal article (14)
conference paper (1)
research review (1)
book chapter (1)
Type of content
peer-reviewed (16)
other academic/artistic (1)
Author/Editor
Zanini, L (9)
Wagner, R (8)
Fierlinger, P. (8)
Rizzi, N. (8)
Santoro, V. (8)
Takibayev, A. (8)
show more...
Zimmer, O. (8)
Kamyshkov, Y. (7)
Rataj, B. (7)
Brooijmans, G. (6)
Kolevatov, R. (6)
Klinkby, E. (6)
Friman-Gayer, U. (6)
Happe, C. (6)
Holl, M. (6)
Muhrer, G. (6)
Nepomuceno, A. (6)
Nilsson, Thomas, 196 ... (6)
Young, A. R. (6)
Kittelmann, T. (5)
Meirose, Bernhard (5)
Moore, R. (5)
Perrey, H. (5)
Mohan, M. (5)
Patel, P. (5)
Ferreira, M. J. (5)
Beßler, Y. (5)
Bianchi, A. (5)
Modolo, MM (5)
Pata, F (5)
Khatri, C (5)
Agarwal, A (5)
Arnaud, AP (5)
Shu, S (5)
Soreide, K (5)
Sund, M (5)
Tabiri, S (5)
Sakr, A (5)
Ahmed, A (5)
Jovine, E (5)
Adeyeye, A (5)
Olori, S (5)
Nouh, T (5)
Warren, O (5)
Smith, C (5)
Patel, K (5)
Bhangu, A (5)
Ramic, K. (5)
Schmitt, F. (5)
Jones, C (5)
show less...
University
Lund University (8)
Uppsala University (6)
Stockholm University (6)
Chalmers University of Technology (6)
Karolinska Institutet (5)
University of Gothenburg (2)
show more...
Umeå University (2)
Royal Institute of Technology (2)
Luleå University of Technology (1)
Karlstad University (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (20)
Research subject (UKÄ/SCB)
Natural sciences (12)
Medical and Health Sciences (2)
Engineering and Technology (1)
Social Sciences (1)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view