SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zhang Guojie) "

Search: WFRF:(Zhang Guojie)

  • Result 1-33 of 33
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Qu, Yanhua, 1974-, et al. (author)
  • The evolution of ancestral and species-specific adaptations in snowfinches at the Qinghai-Tibet Plateau
  • 2021
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 10.1073/pnas.2012398118:13, s. e2012398118-e2012398118
  • Journal article (peer-reviewed)abstract
    • Species in a shared environment tend to evolve similar adaptations under the influence of their phylogenetic context. Using snowfinches, a monophyletic group of passerine birds (Passeridae), we study the relative roles of ancestral and species-specific adaptations to an extreme high-elevation environment, the Qinghai–Tibet Plateau. Our ancestral trait reconstruction shows that the ancestral snowfinch occupied high elevations and had a larger body mass than most nonsnowfinches in Passeridae. Subsequently, this phenotypic adaptation diversified in the descendant species. By comparing high-quality genomes from representatives of the three phylogenetic lineages, we find that about 95% of genes under positive selection in the descendant species are different from those in the ancestor. Consistently, the biological functions enriched for these species differ from those of their ancestor to various degrees (semantic similarity values ranging from 0.27 to 0.5), suggesting that the three descendant species have evolved divergently from the initial adaptation in their common ancestor. Using a functional assay to a highly selective gene, DTL, we demonstrate that the nonsynonymous substitutions in the ancestor and descendant species have improved the repair capacity of ultraviolet-induced DNA damage. The repair kinetics of the DTL gene shows a twofold to fourfold variation across the ancestor and the descendants. Collectively, this study reveals an exceptional case of adaptive evolution to high-elevation environments, an evolutionary process with an initial adaptation in the common ancestor followed by adaptive diversification of the descendant species.
  •  
2.
  • Zhang, Guojie, et al. (author)
  • Comparative genomics reveals insights into avian genome evolution and adaptation
  • 2014
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 346:6215, s. 1311-1320
  • Journal article (peer-reviewed)abstract
    • Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.
  •  
3.
  • Jarvis, Erich D., et al. (author)
  • Whole-genome analyses resolve early branches in the tree of life of modern birds
  • 2014
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 346:6215, s. 1320-1331
  • Journal article (peer-reviewed)abstract
    • To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.
  •  
4.
  • Li, Cai, et al. (author)
  • Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment
  • 2014
  • In: GigaScience. - 2047-217X. ; 3
  • Journal article (peer-reviewed)abstract
    • Background: Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adelie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri]. Results: Phylogenetic dating suggests that early penguins arose similar to 60 million years ago, coinciding with a period of global warming. Analysis of effective population sizes reveals that the two penguin species experienced population expansions from similar to 1 million years ago to similar to 100 thousand years ago, but responded differently to the climatic cooling of the last glacial period. Comparative genomic analyses with other available avian genomes identified molecular changes in genes related to epidermal structure, phototransduction, lipid metabolism, and forelimb morphology. Conclusions: Our sequencing and initial analyses of the first two penguin genomes provide insights into the timing of penguin origin, fluctuations in effective population sizes of the two penguin species over the past 10 million years, and the potential associations between these biological patterns and global climate change. The molecular changes compared with other avian genomes reflect both shared and diverse adaptations of the two penguin species to the Antarctic environment.
  •  
5.
  • Ji, Yanzhu, et al. (author)
  • Orthologous microsatellites, transposable elements, and DNA deletions correlate with generation time and body mass in neoavian birds
  • 2022
  • In: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:35
  • Journal article (peer-reviewed)abstract
    • The rate of mutation accumulation in germline cells can be affected by cell replication and/or DNA damage, which are further related to life history traits such as generation time and body mass. Leveraging the existing datasets of 233 neoavian bird species, here, we investigated whether generation time and body mass contribute to the interspecific variation of orthologous microsatellite length, transposable element (TE) length, and deletion length and how these genomic attributes affect genome sizes. In nonpasserines, we found that generation time is correlated to both orthologous microsatellite length and TE length, and body mass is negatively correlated to DNA deletions. These patterns are less pronounced in passerines. In all species, we found that DNA deletions relate to genome size similarly as TE length, suggesting a role of body mass dynamics in genome evolution. Our results indicate that generation time and body mass shape the evolution of genomic attributes in neoavian birds.
  •  
6.
  • Lawniczak, Mara K. N., et al. (author)
  • Standards recommendations for the Earth BioGenome Project
  • 2022
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 119:4
  • Journal article (peer-reviewed)abstract
    • A global international initiative, such as the Earth BioGenome Project (EBP), requires both agreement and coordination on standards to ensure that the collective effort generates rapid progress toward its goals. To this end, the EBP initiated five technical standards committees comprising volunteer members from the global genomics scientific community: Sample Collection and Processing, Sequencing and Assembly, Annotation, Analysis, and IT and Informatics. The current versions of the resulting standards documents are available on the EBP website, with the recognition that opportunities, technologies, and challenges may improve or change in the future, requiring flexibility for the EBP to meet its goals. Here, we describe some highlights from the proposed standards, and areas where additional challenges will need to be met.
  •  
7.
  • Armstrong, Joel, et al. (author)
  • Progressive Cactus is a multiple-genome aligner for the thousand-genome era
  • 2020
  • In: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 587:7833, s. 246-251
  • Journal article (peer-reviewed)abstract
    • New genome assemblies have been arriving at a rapidly increasing pace, thanks to decreases in sequencing costs and improvements in third-generation sequencing technologies(1-3). For example, the number of vertebrate genome assemblies currently in the NCBI (National Center for Biotechnology Information) database(4) increased by more than 50% to 1,485 assemblies in the year from July 2018 to July 2019. In addition to this influx of assemblies from different species, new human de novo assemblies(5) are being produced, which enable the analysis of not only small polymorphisms, but also complex, large-scale structural differences between human individuals and haplotypes. This coming era and its unprecedented amount of data offer the opportunity to uncover many insights into genome evolution but also present challenges in how to adapt current analysis methods to meet the increased scale. Cactus(6), a reference-free multiple genome alignment program, has been shown to be highly accurate, but the existing implementation scales poorly with increasing numbers of genomes, and struggles in regions of highly duplicated sequences. Here we describe progressive extensions to Cactus to create Progressive Cactus, which enables the reference-free alignment of tens to thousands of large vertebrate genomes while maintaining high alignment quality. We describe results from an alignment of more than 600 amniote genomes, which is to our knowledge the largest multiple vertebrate genome alignment created so far. The Progressive Cactus program can create reference-free alignments of hundreds of large vertebrate genomes efficiently, and is used for the alignment of more than 600 amniote genomes.
  •  
8.
  • Barnett, Ross, et al. (author)
  • Genomic Adaptations and Evolutionary History of the Extinct Scimitar-Toothed Cat, Homotherium latidens
  • 2020
  • In: Current Biology. - 0960-9822 .- 1879-0445.
  • Journal article (peer-reviewed)abstract
    • Summary Homotherium was a genus of large-bodied scimitar-toothed cats, morphologically distinct from any extant felid species, that went extinct at the end of the Pleistocene [1, 2, 3, 4]. They possessed large, saber-form serrated canine teeth, powerful forelimbs, a sloping back, and an enlarged optic bulb, all of which were key characteristics for predation on Pleistocene megafauna [5]. Previous mitochondrial DNA phylogenies suggested that it was a highly divergent sister lineage to all extant cat species [6, 7, 8]. However, mitochondrial phylogenies can be misled by hybridization [9], incomplete lineage sorting (ILS), or sex-biased dispersal patterns [10], which might be especially relevant for Homotherium since widespread mito-nuclear discrepancies have been uncovered in modern cats [10]. To examine the evolutionary history of Homotherium, we generated a ∼7x nuclear genome and a ∼38x exome from H. latidens using shotgun and target-capture sequencing approaches. Phylogenetic analyses reveal Homotherium as highly divergent (∼22.5 Ma) from living cat species, with no detectable signs of gene flow. Comparative genomic analyses found signatures of positive selection in several genes, including those involved in vision, cognitive function, and energy consumption, putatively consistent with diurnal activity, well-developed social behavior, and cursorial hunting [5]. Finally, we uncover relatively high levels of genetic diversity, suggesting that Homotherium may have been more abundant than the limited fossil record suggests [3, 4, 11, 12, 13, 14]. Our findings complement and extend previous inferences from both the fossil record and initial molecular studies, enhancing our understanding of the evolution and ecology of this remarkable lineage.
  •  
9.
  • Blaxter, Mark, et al. (author)
  • Why sequence all eukaryotes?
  • 2022
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 119:4
  • Journal article (other academic/artistic)abstract
    • Life on Earth has evolved from initial simplicity to the astounding complexity we experience today. Bacteria and archaea have largely excelled in metabolic diversification, but eukaryotes additionally display abundant morphological innovation. How have these innovations come about and what constraints are there on the origins of novelty and the continuing maintenance of biodiversity on Earth? The history of life and the code for the working parts of cells and systems are written in the genome. The Earth BioGenome Project has proposed that the genomes of all extant, named eukaryotes-about 2 million species-should be sequenced to high quality to produce a digital library of life on Earth, beginning with strategic phylogenetic, ecological, and high-impact priorities. Here we discuss why we should sequence all eukaryotic species, not just a representative few scattered across the many branches of the tree of life. We suggest that many questions of evolutionary and ecological significance will only be addressable when whole-genome data representing divergences at all of the branchings in the tree of life or all species in natural ecosystems are available. We envisage that a genomic tree of life will foster understanding of the ongoing processes of speciation, adaptation, and organismal dependencies within entire ecosystems. These explorations will resolve long-standing problems in phylogenetics, evolution, ecology, conservation, agriculture, bioindustry, and medicine.
  •  
10.
  • Ciucani, Marta Maria, et al. (author)
  • Evolutionary history of the extinct Sardinian dhole
  • 2021
  • In: Current biology : CB. - : Elsevier BV. - 1879-0445 .- 0960-9822. ; 31, s. 1-9
  • Journal article (peer-reviewed)abstract
    • The Sardinian dhole (Cynotherium sardous)1 was an iconic and unique canid species that was endemic to Sardinia and Corsica until it became extinct at the end of the Late Pleistocene.2-5 Given its peculiar dental morphology, small body size, and high level of endemism, several extant canids have been proposed as possible relatives of the Sardinian dhole, including the Asian dhole and African hunting dog ancestor.3,6-9 Morphometric analyses3,6,8-12 have failed to clarify the evolutionary relationship with other canids.We sequenced the genome of a ca-21,100-year-old Sardinian dhole in order to understand its genomic history and clarify its phylogenetic position. We found that it represents a separate taxon from all other living canids from Eurasia, Africa, and North America, and that the Sardinian dhole lineage diverged from the Asian dhole ca 885 ka. We additionally detected historical gene flow between the Sardinian and Asian dhole lineages, which ended approximately 500-300 ka, when the land bridge between Sardinia and mainland Italy was already broken, severing their population connectivity. Our sample showed low genome-wide diversity compared to other extant canids-probably a result of the long-term isolation-that could have contributed to the subsequent extinction of the Sardinian dhole.
  •  
11.
  • Feng, Shaohong, et al. (author)
  • Dense sampling of bird diversity increases power of comparative genomics
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 587:7833
  • Journal article (peer-reviewed)abstract
    • Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity(1-4). Sparse taxon sampling has previously been proposed to confound phylogenetic inference(5), and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species. A dataset of the genomes of 363 species from the Bird 10,000 Genomes Project shows increased power to detect shared and lineage-specific variation, demonstrating the importance of phylogenetically diverse taxon sampling in whole-genome sequencing.
  •  
12.
  • Formenti, Giulio, et al. (author)
  • The era of reference genomes in conservation genomics
  • 2022
  • In: Trends in Ecology & Evolution. - : Elsevier. - 0169-5347 .- 1872-8383. ; 37:3, s. 197-202
  • Journal article (other academic/artistic)abstract
    • Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics.
  •  
13.
  • Gao, Hong, et al. (author)
  • The landscape of tolerated genetic variation in humans and primates
  • 2023
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 380:6648
  • Journal article (peer-reviewed)abstract
    • Personalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole-genome sequencing data for 809 individuals from 233 primate species and identified 4.3 million common protein-altering variants with orthologs in humans. We show that these variants can be inferred to have nondeleterious effects in humans based on their presence at high allele frequencies in other primate populations. We use this resource to classify 6% of all possible human protein-altering variants as likely benign and impute the pathogenicity of the remaining 94% of variants with deep learning, achieving state-of-the-art accuracy for diagnosing pathogenic variants in patients with genetic diseases.
  •  
14.
  • Gelabert, Pere, et al. (author)
  • Evolutionary History, Genomic Adaptation to Toxic Diet, and Extinction of the Carolina Parakeet
  • 2020
  • In: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 30:1, s. 108-114
  • Journal article (peer-reviewed)abstract
    • As the only endemic neotropical parrot to have recently lived in the northern hemisphere, the Carolina parakeet (Conuropsis carolinensis) was an iconic North American bird. The last surviving specimen died in the Cincinnati Zoo in 1918 [1]. The cause of its extinction remains contentious: besides excessive mortality associated to habitat destruction and active hunting, their survival could have been negatively affected by its range having become increasingly patchy [2] or by the exposure to poultry pathogens [3, 4]. In addition, the Carolina parakeet showed a pre-dilection for cockleburs, an herbaceousplant that contains a powerful toxin, carboxyatractyloside, or CAT [5], which did not seem to affect them but made the birds notoriously toxic to most predators [3]. To explore the demographic history of this bird, we generated the complete genomic sequence of a preserved specimen held in a private collection in Espinelves (Girona, Spain), as well as of a close extant relative, Aratinga solstitialis. We identified two non-synonymous genetic changes in two highly conserved proteins known to interact with CAT that could underlie a specific dietary adaptation to this toxin. Our genomic analyses did not reveal evidence of a dramatic past demographic decline in the Carolina parakeet; also, its genome did not exhibit the long runs of homozygosity that are signals of recent inbreeding and are typically found in endangered species. As such, our results suggest its extinction was an abrupt process and thus likely solely attributable to human causes.
  •  
15.
  • Green, Richard E., et al. (author)
  • Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs
  • 2014
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 346:6215, s. 1335-
  • Journal article (peer-reviewed)abstract
    • To provide context for the diversification of archosaurs-the group that includes crocodilians, dinosaurs, and birds-we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the comparatively rapid evolution is derived in birds. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs, thereby providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs.
  •  
16.
  • Hu, Guojie, et al. (author)
  • Water and heat coupling processes and its simulation in frozen soils : Current status and future research directions
  • 2023
  • In: Catena. - : Elsevier BV. - 0341-8162. ; 222
  • Research review (peer-reviewed)abstract
    • To date, most studies on coupled-water-and-heat processes in frozen soils haves focused on the mechanism of changes in frozen soil and the contribution of climate change, hydrological processes, and ecosystems in cold regions. Several studies have demonstrated considerable improvements in the accuracy of simulating water and heat transfer processes in cold regions. However, substantial differences remain among the different models and parameterizations because of the lack of observations and in-depth understanding of the water and heat transfer processes. Hence, it is necessary to summarize recent advances in the simulation of water-and-heat-coupling processes and challenges for further research. Therefore, we present a theory-focused summary of progress in this field considering the aspects of water flow and coupled-water-and-heat transfer. The simulation progress is discussed in terms of physical process models; one type of model only considers the heat conduction transfer processes without water flow, and the other considers coupled-water-and-heat transfer processes. Aspects of model deficiencies related to non-conductive heat transfer and soil water transfer processes in the frozen soil are also summarized. Moreover, the major parameterizations are reviewed, including phase changes, freeze–thaw fronts, thermal conductivity, hydraulic conductivity, snow processes, surface parameterization schemes, ground ice, and lower boundary conditions. While models and parameterizations can suitably capture local-scale water and heat transfer processes in frozen soil, their applications are spatiotemporally constrained, requiring further improvement. We provide a theoretical basis for further studying water and heat transfer processes in frozen soil and suggest that future research should enhance the accuracy of frozen soil parameterization and improve the understanding of the coupling of water and heat transfer processes based on improved observation techniques and high-resolution data.
  •  
17.
  • Jarvis, Erich D., et al. (author)
  • Phylogenomic analyses data of the avian phylogenomics project
  • 2015
  • In: GigaScience. - : Oxford University Press (OUP). - 2047-217X. ; 4
  • Journal article (peer-reviewed)abstract
    • Background: Determining the evolutionary relationships among the major lineages of extant birds has been one of the biggest challenges in systematic biology. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae and two of the five Palaeognathae orders. We used these genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomic analyses. Findings: Here we present the datasets associated with the phylogenomic analyses, which include sequence alignment files consisting of nucleotides, amino acids, indels, and transposable elements, as well as tree files containing gene trees and species trees. Inferring an accurate phylogeny required generating: 1) A well annotated data set across species based on genome synteny; 2) Alignments with unaligned or incorrectly overaligned sequences filtered out; and 3) Diverse data sets, including genes and their inferred trees, indels, and transposable elements. Our total evidence nucleotide tree (TENT) data set (consisting of exons, introns, and UCEs) gave what we consider our most reliable species tree when using the concatenation-based ExaML algorithm or when using statistical binning with the coalescence-based MP-EST algorithm (which we refer to as MP-EST*). Other data sets, such as the coding sequence of some exons, revealed other properties of genome evolution, namely convergence. Conclusions: The Avian Phylogenomics Project is the largest vertebrate phylogenomics project to date that we are aware of. The sequence, alignment, and tree data are expected to accelerate analyses in phylogenomics and other related areas.
  •  
18.
  • Kuderna, Lukas F. K., et al. (author)
  • Identification of constrained sequence elements across 239 primate genomes
  • 2024
  • In: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 625:7996, s. 735-742
  • Journal article (peer-reviewed)abstract
    • Noncoding DNA is central to our understanding of human gene regulation and complex diseases1,2, and measuring the evolutionary sequence constraint can establish the functional relevance of putative regulatory elements in the human genome3,4,5,6,7,8,9. Identifying the genomic elements that have become constrained specifically in primates has been hampered by the faster evolution of noncoding DNA compared to protein-coding DNA10, the relatively short timescales separating primate species11, and the previously limited availability of whole-genome sequences12. Here we construct a whole-genome alignment of 239 species, representing nearly half of all extant species in the primate order. Using this resource, we identified human regulatory elements that are under selective constraint across primates and other mammals at a 5% false discovery rate. We detected 111,318 DNase I hypersensitivity sites and 267,410 transcription factor binding sites that are constrained specifically in primates but not across other placental mammals and validate their cis-regulatory effects on gene expression. These regulatory elements are enriched for human genetic variants that affect gene expression and complex traits and diseases. Our results highlight the important role of recent evolution in regulatory sequence elements differentiating primates, including humans, from other placental mammals.
  •  
19.
  • Lewin, Harris A., et al. (author)
  • The Earth BioGenome Project 2020 : Starting the clock
  • 2022
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 119:4
  • Journal article (other academic/artistic)
  •  
20.
  • Liu, Shanlin, et al. (author)
  • Ancient and modem genomes unravel the evolutionary history of the rhinoceros family
  • 2021
  • In: Cell. - : Elsevier. - 0092-8674 .- 1097-4172. ; 184:19, s. 4874-4885.e16
  • Journal article (peer-reviewed)abstract
    • Only five species of the once-diverse Rhinocerotidae remain, making the reconstruction of their evolutionary history a challenge to biologists since Darwin. We sequenced genomes from five rhinoceros species (three extinct and two living), which we compared to existing data from the remaining three living species and a range of outgroups. We identify an early divergence between extant African and Eurasian lineages, resolving a key debate regarding the phylogeny of extant rhinoceroses. This early Miocene (similar to 16 million years ago [mya]) split post-dates the land bridge formation between the Afro-Arabian and Eurasian landmasses. Our analyses also show that while rhinoceros genomes in general exhibit low levels of genome-wide diversity, heterozygosity is lowest and inbreeding is highest in the modern species. These results suggest that while low genetic diversity is a long-term feature of the family, it has been particularly exacerbated recently, likely reflecting recent anthropogenic-driven population declines.
  •  
21.
  • Liu, Shiping, et al. (author)
  • Population Genomics Reveal Recent Speciation and Rapid Evolutionary Adaptation in Polar Bears
  • 2014
  • In: Cell. - : Elsevier BV. - 0092-8674 .- 1097-4172. ; 157:4, s. 785-794
  • Journal article (peer-reviewed)abstract
    • Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic physiological changes in response to Arctic climates and a hyper-lipid diet of primarily marine mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population genomic modeling and show that the species diverged only 479-343 thousand years BP. We find that genes on the polar bear lineage have been under stronger positive selection than in brown bears; nine of the top 16 genes under strong positive selection are associated with cardiomyopathy and vascular disease, implying important reorganization of the cardiovascular system. One of the genes showing the strongest evidence of selection, APOB, encodes the primary lipoprotein component of low-density lipoprotein (LDL); functional mutations in APOB may explain how polar bears are able to cope with life-long elevated LDL levels that are associated with high risk of heart disease in humans.
  •  
22.
  • Lord, Edana, et al. (author)
  • Pre-extinction Demographic Stability and Genomic Signatures of Adaptation in the Woolly Rhinoceros
  • 2020
  • In: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 30:19
  • Journal article (peer-reviewed)abstract
    • Ancient DNA has significantly improved our understanding of the evolution and population history of extinct megafauna. However, few studies have used complete ancient genomes to examine species responses to climate change prior to extinction. The woolly rhinoceros (Coelodonta antiquitatis) was a cold-adapted megaherbivore widely distributed across northern Eurasia during the Late Pleistocene and became extinct approximately 14 thousand years before present (ka BP). While humans and climate change have been proposed as potential causes of extinction [1-3], knowledge is limited on how the woolly rhinoceros was impacted by human arrival and climatic fluctuations [2]. Here, we use one complete nuclear genome and 14 mitogenomes to investigate the demographic history of woolly rhinoceros leading up to its extinction. Unlike other northern megafauna, the effective population size of woolly rhinoceros likely increased at 29.7 ka BP and subsequently remained stable until close to the species’ extinction. Analysis of the nuclear genome from a similar to 18.5-ka-old specimen did not indicate any increased inbreeding or reduced genetic diversity, suggesting that the population size remained steady for more than 13 ka following the arrival of humans [4]. The population contraction leading to extinction of the woolly rhinoceros may have thus been sudden and mostly driven by rapid warming in the Bolling-Allerod interstadial. Furthermore, we identify woolly rhinoceros-specific adaptations to arctic climate, similar to those of the woolly mammoth. This study highlights how species respond differently to climatic fluctuations and further illustrates the potential of palaeogenomics to study the evolutionary history of extinct species.
  •  
23.
  • Nadachowska-Brzyska, Krystyna, et al. (author)
  • Temporal Dynamics of Avian Populations during Pleistocene Revealed by Whole-Genome Sequences
  • 2015
  • In: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 25:10, s. 1375-1380
  • Journal article (peer-reviewed)abstract
    • Global climate fluctuations have significantly influenced the distribution and abundance of biodiversity [1]. During unfavorable glacial periods, many species experienced range contraction and fragmentation, expanding again during interglacials [2- 4]. An understanding of the evolutionary consequences of both historical and ongoing climate changes requires knowledge of the temporal dynamics of population numbers during such climate cycles. Variation in abundance should have left clear signatures in the patterns of intraspecific genetic variation in extant species, from which historical effective population sizes (Ne) can be estimated [3]. We analyzed whole-genome sequences of 38 avian species in a pairwise sequentially Markovian coalescent (PSMC, [5]) framework to quantitatively reveal changes in Ne from approximately 10 million to 10 thousand years ago. Significant fluctuations in Ne over time were evident for most species. The most pronounced pattern observed in many species was a severe reduction in Ne coinciding with the beginning of the last glacial period (LGP). Among species, Ne varied by at least three orders of magnitude, exceeding 1 million in the most abundant species. Several species on the IUCN Red List of Threatened Species showed long-term reduction in population size, predating recent declines. We conclude that cycles of population expansions and contractions have been a common feature of many bird species during the Quaternary period, likely coinciding with climate cycles. Population size reduction should have increased the risk of extinction but may also have promoted speciation. Species that have experienced long-term declines may be especially vulnerable to recent anthropogenic threats.
  •  
24.
  • Orlando, Ludovic, et al. (author)
  • Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse
  • 2013
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 499:7456, s. 74-
  • Journal article (peer-reviewed)abstract
    • The rich fossil record of equids has made them a model for evolutionary processes(1). Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560-780 thousand years before present (kyr BP)(2,3). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyr BP), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski's horse (E. f. prze-walskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0-4.5 million years before present (Myr BP), twice the conventionally accepted time to the most recent common ancestor of the genus Equus(4,5). We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski's and domestic horse populations diverged 38-72 kyr BP, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski's horse investigated. This supports the contention that Przewalski's horses represent the last surviving wild horse population(6). We find similar levels of genetic variation among Przewalski's and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski's horse. Such regions could correspond to loci selected early during domestication.
  •  
25.
  • Ribeiro, Angela M., et al. (author)
  • 31 degrees South : The physiology of adaptation to arid conditions in a passerine bird
  • 2019
  • In: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 28:16, s. 3709-3721
  • Journal article (peer-reviewed)abstract
    • Arid environments provide ideal ground for investigating the mechanisms of adaptive evolution. High temperatures and low water availability are relentless stressors for many endotherms, including birds; yet birds persist in deserts. While physiological adaptation probably involves metabolic phenotypes, the underlying mechanisms (plasticity, genetics) are largely uncharacterized. To explore this, we took an intraspecific approach that focused on a species that is resident over a mesic to arid gradient, the Karoo scrub-robin (Cercotrichas coryphaeus). Specifically, we integrated environmental (climatic and primary productivity), physiological (metabolic rates: a measure of energy expenditure), genotypic (genetic variation underlying the machinery of energy production) and microbiome (involved in processing food from where energy is retrieved) data, to infer the mechanism of physiological adaptation. We that found the variation in energetic physiology phenotypes and gut microbiome composition are associated with environmental features as well as with variation in genes underlying energy metabolic pathways. Specifically, we identified a small list of candidate adaptive genes, some of them with known ties to relevant physiology phenotypes. Together our results suggest that selective pressures on energetic physiology mediated by genes related to energy homeostasis and possibly microbiota composition may facilitate adaptation to local conditions and provide an explanation to the high avian intraspecific divergence observed in harsh environments.
  •  
26.
  • Richtman Feuerborn, Tatiana, et al. (author)
  • Modern Siberian dog ancestry was shaped by several thousand years of Eurasian-wide trade and human dispersal
  • 2021
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 118:39
  • Journal article (peer-reviewed)abstract
    • Dogs have been essential to life in the Siberian Arctic for over 9,500 y, and this tight link between people and dogs continues in Siberian communities. Although Arctic Siberian groups such as the Nenets received limited gene flow from neighboring groups, archaeological evidence suggests that metallurgy and new subsistence strategies emerged in Northwest Siberia around 2,000 y ago. It is unclear if the Siberian Arctic dog population was as continuous as the people of the region or if instead admixture occurred, possibly in relation to the influx of material culture from other parts of Eurasia. To address this question, we sequenced and analyzed the genomes of 20 ancient and historical Siberian and Eurasian Steppe dogs. Our analyses indicate that while Siberian dogs were genetically homogenous between 9,500 to 7,000 y ago, later introduction of dogs from the Eurasian Steppe and Europe led to substantial admixture. This is clearly the case in the Iamal-Nenets region (Northwestern Siberia) where dogs from the Iron Age period (∼2,000 y ago) possess substantially less ancestry related to European and Steppe dogs than dogs from the medieval period (∼1,000 y ago). Combined with findings of nonlocal materials recovered from these archaeological sites, including glass beads and metal items, these results indicate that Northwest Siberian communities were connected to a larger trade network through which they acquired genetically distinctive dogs from other regions. These exchanges were part of a series of major societal changes, including the rise of large-scale reindeer pastoralism ∼800 y ago.
  •  
27.
  • Sánchez-Barreiro, Fátima, et al. (author)
  • Historic Sampling of a Vanishing Beast: Population Structure and Diversity in the Black Rhinoceros
  • 2023
  • In: Molecular biology and evolution. - 0737-4038 .- 1537-1719. ; 40:9
  • Journal article (peer-reviewed)abstract
    • The black rhinoceros (Diceros bicornis L.) is a critically endangered species historically distributed across sub-Saharan Africa. Hunting and habitat disturbance have diminished both its numbers and distribution since the 19th century, but a poaching crisis in the late 20th century drove them to the brink of extinction. Genetic and genomic assessments can greatly increase our knowledge of the species and inform management strategies. However, when a species has been severely reduced, with the extirpation and artificial admixture of several populations, it is extremely challenging to obtain an accurate understanding of historic population structure and evolutionary history from extant samples. Therefore, we generated and analyzed whole genomes from 63 black rhinoceros museum specimens collected between 1775 and 1981. Results showed that the black rhinoceros could be genetically structured into six major historic populations (Central Africa, East Africa, Northwestern Africa, Northeastern Africa, Ruvuma, and Southern Africa) within which were nested four further subpopulations (Maasailand, southwestern, eastern rift, and northern rift), largely mirroring geography, with a punctuated north–south cline. However, we detected varying degrees of admixture among groups and found that several geographical barriers, most prominently the Zambezi River, drove population discontinuities. Genomic diversity was high in the middle of the range and decayed toward the periphery. This comprehensive historic portrait also allowed us to ascertain the ancestry of 20 resequenced genomes from extant populations. Lastly, using insights gained from this unique temporal data set, we suggest management strategies, some of which require urgent implementation, for the conservation of the remaining black rhinoceros diversity.
  •  
28.
  • Sánchez‐Barreiro, Fátima, et al. (author)
  • Historical population declines prompted significant genomic erosion in the northern and southern white rhinoceros ( Ceratotherium simum )
  • 2021
  • In: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 30:23, s. 6355-6369
  • Journal article (peer-reviewed)abstract
    • Large vertebrates are extremely sensitive to anthropogenic pressure, and their populations are declining fast. The white rhinoceros (Ceratotherium simum) is a paradigmatic case: this African megaherbivore has suffered a remarkable decline in the last 150 years due to human activities. Its subspecies, the northern (NWR) and the southern white rhinoceros (SWR), however, underwent opposite fates: the NWR vanished quickly, while the SWR recovered after the severe decline. Such demographic events are predicted to have an erosive effect at the genomic level, linked to the extirpation of diversity, and increased genetic drift and inbreeding. However, there is little empirical data available to directly reconstruct the subtleties of such processes in light of distinct demographic histories. Therefore, we generated a whole-genome, temporal data set consisting of 52 resequenced white rhinoceros genomes, representing both subspecies at two time windows: before and during/after the bottleneck. Our data reveal previously unknown population structure within both subspecies, as well as quantifiable genomic erosion. Genome-wide heterozygosity decreased significantly by 10% in the NWR and 36% in the SWR, and inbreeding coefficients rose significantly by 11% and 39%, respectively. Despite the remarkable loss of genomic diversity and recent inbreeding it suffered, the only surviving subspecies, the SWR, does not show a significant accumulation of genetic load compared to its historical counterpart. Our data provide empirical support for predictions about the genomic consequences of shrinking populations, and our findings have the potential to inform the conservation efforts of the remaining white rhinoceroses.
  •  
29.
  • Theissinger, Kathrin, et al. (author)
  • How genomics can help biodiversity conservation
  • 2023
  • In: Trends in Genetics. - : Elsevier. - 0168-9525 .- 1362-4555. ; 39:7, s. 545-559
  • Research review (peer-reviewed)abstract
    • The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics.
  •  
30.
  • Thorup, Kasper, et al. (author)
  • Response of an Afro-Palearctic bird migrant to glaciation cycles
  • 2021
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 118:52
  • Journal article (peer-reviewed)abstract
    • Migration allows animals to exploit spatially separated and seasonally available resources at a continental to global scale. However, responding to global climatic changes might prove challenging, especially for long-distance intercontinental migrants. During glacial periods, when conditions became too harsh for breeding in the north, avian migrants have been hypothesized to retract their distribution to reside within small refugial areas. Here, we present data showing that an Afro-Palearctic migrant continued seasonal migration, largely within Africa, during previous glacial-interglacial cycles with no obvious impact on population size. Using individual migratory track data to hindcast monthly bioclimatic habitat availability maps through the last 120,000 y, we show altered seasonal use of suitable areas through time. Independently derived effective population sizes indicate a growing population through the last 40,000 y. We conclude that the migratory lifestyle enabled adaptation to shifting climate conditions. This indicates that populations of resource-tracking, longdistance migratory species could expand successfully during warming periods in the past, which could also be the case under future climate scenarios.
  •  
31.
  • Wu, Tonghua, et al. (author)
  • Storage, patterns, and environmental controls of soil organic carbon stocks in the permafrost regions of the Northern Hemisphere
  • 2022
  • In: Science of the Total Environment. - : Elsevier BV. - 0048-9697. ; 828
  • Journal article (peer-reviewed)abstract
    • Large stocks of soil organic carbon (SOC) accumulated in the Northern Hemisphere permafrost regions may be vulnerable to climatic warming, but global estimates of SOC distribution and magnitude in permafrost regions still have large uncertainties. Based on multiple high-resolution environmental variables and a compiled soil sample dataset (>3000 soil profiles), we used machine-learning methods to estimate the size and spatial distribution of SOC for the top 3 m soils in the Northern Hemisphere permafrost regions. We also identified key environmental predictors of SOC. The results showed that the SOC storage for the top 3 m soil was 1079 ± 174 Pg C across the Northern Hemisphere permafrost regions (20.8 × 106 km2), including 1057 ± 167 Pg C in the northern permafrost regions and 22 ± 7 Pg C in the Third Pole permafrost regions. The mean annual air temperature and NDVI are the main controlling factors for the spatial distribution of SOC stocks in the northern and the Third Pole permafrost regions. Our estimations were more accurate than the existing global SOC stock maps. The results improve our understanding of the regional and global permafrost carbon cycle and their feedback to the climate system.
  •  
32.
  • Xu, Luohao, et al. (author)
  • Dynamic evolutionary history and gene content of sex chromosomes across diverse songbirds
  • 2019
  • In: Nature Ecology & Evolution. - : NATURE PUBLISHING GROUP. - 2397-334X. ; 3:5, s. 834-844
  • Journal article (peer-reviewed)abstract
    • Songbirds have a species number close to that of mammals and are classic models for studying speciation and sexual selection. Sex chromosomes are hotspots of both processes, yet their evolutionary history in songbirds remains unclear. We characterized genomes of 11 songbird species, with 5 genomes of bird-of-paradise species. We conclude that songbird sex chromosomes have undergone four periods of recombination suppression before species radiation, producing a gradient of pairwise sequence divergence termed ‘evolutionary strata’. The latest stratum was probably due to a songbird-specific burst of retrotransposon CR1-E1 elements at its boundary, instead of the chromosome inversion generally assumed for suppressing sex-linked recombination. The formation of evolutionary strata has reshaped the genomic architecture of both sex chromosomes. We find stepwise variations of Z-linked inversions, repeat and guanine-cytosine (GC) contents, as well as W-linked gene loss rate associated with the age of strata. A few W-linked genes have been preserved for their essential functions, indicated by higher and broader expression of lizard orthologues compared with those of other sex-linked genes. We also find a different degree of accelerated evolution of Z-linked genes versus autosomal genes among species, potentially reflecting diversified intensity of sexual selection. Our results uncover the dynamic evolutionary history of songbird sex chromosomes and provide insights into the mechanisms of recombination suppression.
  •  
33.
  • Zhang, Wenxin, et al. (author)
  • Convergence and divergence emerging in climatic controls of polynomial trends for northern ecosystem productivity over 2000–2018
  • 2023
  • In: Science of the Total Environment. - : Elsevier BV. - 1879-1026 .- 0048-9697.
  • Journal article (peer-reviewed)abstract
    • Southwest China has been the largest terrestrial carbon sink in China over the past 30 years, but has recently experienced a succession of droughts caused by high precipitation variability, potentially threatening vegetation productivity in the region. Yet, the impact of precipitation anomalies on the vegetation primary productivity is poorly known. We used an asymmetry index (AI) to explore possible asymmetric productivity responses to precipitation anomalies in Southwest China from 2003 to 2018, using a precipitation dataset, combined with gross primary productivity (GPP), net primary productivity (NPP), and vegetation optical depth (VOD) products. Our results indicate that the vegetation primary productivity of Southwest China shows a negative asymmetry, suggesting that the increase of vegetation primary productivity during wet years exceeds the decrease during dry years. However, this negative asymmetry of vegetation primary productivity was shifted towards a positive asymmetry during the period of analysis, suggesting that the resistance of vegetation to drought, has increased with the rise in the occurrence of drought events. Among the different biomes, grassland vegetation primary productivity had the highest sensitivity to precipitation anomalies, indicating that grasslands are more flexible than other biomes and able to adjust primary productivity in response to precipitation anomalies. Furthermore, our results showed that the asymmetry of vegetation primary productivity was influenced by the effects of temperature, precipitation, solar radiation, and anthropogenic and topographic factors. These findings improve our understanding of the response of vegetation primary productivity to climate change over Southwest China.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-33 of 33
Type of publication
journal article (31)
research review (2)
Type of content
peer-reviewed (30)
other academic/artistic (3)
Author/Editor
Zhang, Guojie (30)
Gilbert, M. Thomas P ... (15)
Jarvis, Erich D. (12)
Dalen, Love (9)
Edwards, Scott V. (7)
Marques-Bonet, Tomas (7)
show more...
Haussler, David (6)
Willerslev, Eske (6)
Feng, Shaohong (6)
Suh, Alexander (6)
Shapiro, Beth (6)
Lindblad-Toh, Kersti ... (5)
Margaryan, Ashot (5)
Sicheritz-Ponten, Th ... (5)
Petersen, Bent (5)
Sinding, Mikkel-Holg ... (5)
Gopalakrishnan, Shya ... (5)
Fang, Qi (5)
Wang, Jun (4)
Ho, Simon Y. W. (4)
Orlando, Ludovic (4)
Bruford, Michael W. (4)
Zhou, Qi (4)
Paten, Benedict (4)
Wang, Jian (4)
Li, Bo (4)
Westbury, Michael V. (4)
Johnson, Warren E. (4)
Lei, Fumin (3)
Green, Richard E. (3)
Ellegren, Hans (3)
Zhang, Wenxin (3)
Durbin, Richard (3)
Hansen, Anders J. (3)
Zhang, Yong (3)
Guschanski, Katerina ... (3)
Armstrong, Joel (3)
Hickey, Glenn (3)
Stiller, Josefin (3)
Hall, Neil (3)
De Cahsan, Binia (3)
Burt, David W. (3)
Balint, Miklos (3)
Antunes, Agostinho (3)
Lorenzen, Eline D. (3)
Formenti, Giulio (3)
Mazzoni, Camila J. (3)
Archibald, John M. (3)
Childers, Anna K. (3)
Coddington, Jonathan ... (3)
show less...
University
Uppsala University (20)
Swedish Museum of Natural History (12)
Stockholm University (6)
Lund University (6)
Swedish University of Agricultural Sciences (2)
Language
English (33)
Research subject (UKÄ/SCB)
Natural sciences (30)
Engineering and Technology (1)
Medical and Health Sciences (1)
Agricultural Sciences (1)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view