SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zhou ZC) "

Search: WFRF:(Zhou ZC)

  • Result 1-50 of 62
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • Zhou, JT, et al. (author)
  • P2X7 Receptor-Mediated Inflammation in Cardiovascular Disease
  • 2021
  • In: Frontiers in pharmacology. - : Frontiers Media SA. - 1663-9812. ; 12, s. 654425-
  • Journal article (peer-reviewed)abstract
    • Purinergic P2X7 receptor, a nonselective cation channel, is highly expressed in immune cells as well as cardiac smooth muscle cells and endothelial cells. Its activation exhibits to mediate nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome activation, resulting in the release of interleukin-1 beta (IL-1β) and interleukin-18 (IL-18), and pyroptosis, thus triggering inflammatory response. These pathological mechanisms lead to the deterioration of various cardiovascular diseases, including atherosclerosis, arrhythmia, myocardial infarction, pulmonary vascular remodeling, and cardiac fibrosis. All these worsening cardiac phenotypes are proven to be attenuated after the P2X7 receptor inhibition in experimental studies. The present review aimed to summarize key aspects of P2X7 receptor–mediated inflammation and pyroptosis in cardiovascular diseases. The main focus is on the evidence addressing the involvement of the P2X7 receptor in the inflammatory responses to the occurrence and development of cardiovascular disease and therapeutic interventions.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Callaway, EM, et al. (author)
  • A multimodal cell census and atlas of the mammalian primary motor cortex
  • 2021
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 598:7879, s. 86-102
  • Journal article (peer-reviewed)abstract
    • Here we report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties and cellular resolution input–output mapping, integrated through cross-modal computational analysis. Our results advance the collective knowledge and understanding of brain cell-type organization1–5. First, our study reveals a unified molecular genetic landscape of cortical cell types that integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a consensus taxonomy of transcriptomic types and their hierarchical organization that is conserved from mouse to marmoset and human. Third, in situ single-cell transcriptomics provides a spatially resolved cell-type atlas of the motor cortex. Fourth, cross-modal analysis provides compelling evidence for the transcriptomic, epigenomic and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types. We further present an extensive genetic toolset for targeting glutamatergic neuron types towards linking their molecular and developmental identity to their circuit function. Together, our results establish a unifying and mechanistic framework of neuronal cell-type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Dankl, D, et al. (author)
  • Red Cell Distribution Width Is Independently Associated with Mortality in Sepsis
  • 2022
  • In: Medical principles and practice : international journal of the Kuwait University, Health Science Centre. - : S. Karger AG. - 1423-0151. ; 31:2, s. 187-194
  • Journal article (peer-reviewed)abstract
    • <b><i>Background:</i></b> Mortality in sepsis remains high. Studies on small cohorts have shown that red cell distribution width (RDW) is associated with mortality. The aim of this study was to validate these findings in a large multicenter cohort. <b><i>Methods:</i></b> We conducted this retrospective analysis of the multicenter eICU Collaborative Research Database in 16,423 septic patients. We split the cohort in patients with low (≤15%; <i>n</i> = 7,129) and high (&#x3e;15%; <i>n</i> = 9,294) RDW. Univariable and multivariable multilevel logistic regressions were used to fit regression models for the binary primary outcome of hospital mortality and the secondary outcome intensive care unit (ICU) mortality with hospital unit as random effect. Optimal cutoffs were calculated using the Youden index. <b><i>Results:</i></b> Patients with high RDW were more often older than 65 years (57% vs. 50%; <i>p</i> &#x3c; 0.001) and had higher Acute Physiology and Chronic Health Evaluation (APACHE) IV scores (69 vs. 60 pts.; <i>p</i> &#x3c; 0.001). Both hospital (adjusted odds ratios [aOR] 1.18; 95% CI: 1.16–1.20; <i>p</i> &#x3c; 0.001) and ICU mortality (aOR 1.16; 95% CI: 1.14–1.18; <i>p</i> &#x3c; 0.001) were associated with RDW as a continuous variable. Patients with high RDW had a higher hospital mortality (20 vs. 9%; aOR 2.63; 95% CI: 2.38–2.90; <i>p</i> &#x3c; 0.001). This finding persisted after multivariable adjustment (aOR 2.14; 95% CI: 1.93–2.37; <i>p</i> &#x3c; 0.001) in a multilevel logistic regression analysis. The optimal RDW cutoff for the prediction of hospital mortality was 16%. <b><i>Conclusion:</i></b> We found an association of RDW with mortality in septic patients and propose an optimal cutoff value for risk stratification. In a combined model with lactate, RDW shows equivalent diagnostic performance to Sequential Organ Failure Assessment (SOFA) score and APACHE IV score.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  • Jiao, T, et al. (author)
  • Erythrocytes from patients with ST-elevation myocardial infarction induce cardioprotection through the purinergic P2Y13 receptor and nitric oxide signaling
  • 2022
  • In: Basic research in cardiology. - : Springer Science and Business Media LLC. - 1435-1803 .- 0300-8428. ; 117:1, s. 46-
  • Journal article (peer-reviewed)abstract
    • Red blood cells (RBCs) are suggested to play a role in cardiovascular regulation by exporting nitric oxide (NO) bioactivity and ATP under hypoxia. It remains unknown whether such beneficial effects of RBCs are protective in patients with acute myocardial infarction. We investigated whether RBCs from patients with ST-elevation myocardial infarction (STEMI) protect against myocardial ischemia–reperfusion injury and whether such effect involves NO and purinergic signaling in the RBCs. RBCs from patients with STEMI undergoing primary coronary intervention and healthy controls were administered to isolated rat hearts subjected to global ischemia and reperfusion. Compared to RBCs from healthy controls, RBCs from STEMI patients reduced myocardial infarct size (30 ± 12% RBC healthy vs. 11 ± 5% RBC STEMI patients, P < 0.001), improved recovery of left-ventricular developed pressure and dP/dt and reduced left-ventricular end-diastolic pressure in hearts subjected to ischemia–reperfusion. Inhibition of RBC NO synthase with L-NAME or soluble guanylyl cyclase (sGC) with ODQ, and inhibition of cardiac protein kinase G (PKG) abolished the cardioprotective effect. Furthermore, the non-selective purinergic P2 receptor antagonist PPADS but not the P1 receptor antagonist 8PT attenuated the cardioprotection induced by RBCs from STEMI patients. The P2Y13 receptor was expressed in RBCs and the cardioprotection was abolished by the P2Y13 receptor antagonist MRS2211. By contrast, perfusion with PPADS, L-NAME, or ODQ prior to RBCs administration failed to block the cardioprotection induced by RBCs from STEMI patients. Administration of RBCs from healthy subjects following pre-incubation with an ATP analog reduced infarct size from 20 ± 6 to 7 ± 2% (P < 0.001), and this effect was abolished by ODQ and MRS2211. This study demonstrates a novel function of RBCs in STEMI patients providing protection against myocardial ischemia–reperfusion injury through the P2Y13 receptor and the NO–sGC–PKG pathway.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  • Mahdi, A, et al. (author)
  • Altered Purinergic Receptor Sensitivity in Type 2 Diabetes-Associated Endothelial Dysfunction and Up₄A-Mediated Vascular Contraction
  • 2018
  • In: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 19:12
  • Journal article (peer-reviewed)abstract
    • Purinergic signaling may be altered in diabetes accounting for endothelial dysfunction. Uridine adenosine tetraphosphate (Up4A), a novel dinucleotide substance, regulates vascular function via both purinergic P1 and P2 receptors (PR). Up4A enhances vascular contraction in isolated arteries of diabetic rats likely through P2R. However, the precise involvement of PRs in endothelial dysfunction and the vasoconstrictor response to Up4A in diabetes has not been fully elucidated. We tested whether inhibition of PRs improved endothelial function and attenuated Up4A-mediated vascular contraction using both aortas and mesenteric arteries of type 2 diabetic (T2D) Goto Kakizaki (GK) rats vs. control Wistar (WT) rats. Endothelium-dependent (EDR) but not endothelium-independent relaxation was significantly impaired in both aortas and mesenteric arteries from GK vs. WT rats. Non-selective inhibition of P1R or P2R significantly improved EDR in aortas but not mesenteric arteries from GK rats. Inhibition of A1R, P2X7R, or P2Y6R significantly improved EDR in aortas. Vasoconstrictor response to Up4A was enhanced in aortas but not mesenteric arteries of GK vs. WT rats via involvement of A1R and P2X7R but not P2Y6R. Depletion of major endothelial component nitric oxide enhanced Up4A-induced aortic contraction to a similar extent between WT and GK rats. No significant differences in protein levels of A1R, P2X7R, and P2Y6R in aortas from GK and WT rats were observed. These data suggest that altered PR sensitivity accounts for endothelial dysfunction in aortas in diabetes. Modulating PRs may represent a potential therapy for improving endothelial function.
  •  
26.
  • Mahdi, A, et al. (author)
  • Erythrocytes Induce Endothelial Injury in Type 2 Diabetes Through Alteration of Vascular Purinergic Signaling
  • 2020
  • In: Frontiers in pharmacology. - : Frontiers Media SA. - 1663-9812. ; 11, s. 603226-
  • Journal article (peer-reviewed)abstract
    • It is well established that altered purinergic signaling contributes to vascular dysfunction in type 2 diabetes (T2D). Red blood cells (RBCs) serve as an important pool for circulating ATP and the release of ATP from RBCs in response to physiological stimuli is impaired in T2D. We recently demonstrated that RBCs from patients with T2D (T2D RBC) serve as key mediators of endothelial dysfunction. However, it remains unknown whether altered vascular purinergic signaling is involved in the endothelial dysfunction induced by dysfunctional RBCs in T2D. Here, we evaluated acetylcholine-induced endothelium-dependent relaxation (EDR) of isolated rat aortas after 18 h ex vivo co-incubation with human RBCs, and aortas of healthy recipient rats 4 h after in vivo transfusion with RBCs from T2D Goto-Kakizaki (GK) rats. Purinergic receptor (PR) antagonists were applied in isolated aortas to study the involvement of PRs. EDR was impaired in aortas incubated with T2D RBC but not with RBCs from healthy subjects ex vivo, and in aortas of healthy rats after transfusion with GK RBCs in vivo. The impairment in EDR by T2D RBC was attenuated by non-selective P1R and P2R antagonism, and specific A1R, P2X7R but not P2Y6R antagonism. Transfusion with GK RBCs in vivo impaired EDR in aortas of recipient rats, an effect that was attenuated by A1R, P2X7R but not P2Y6R antagonism. In conclusion, RBCs induce endothelial dysfunction in T2D via vascular A1R and P2X7R but not P2Y6R. Targeting vascular purinergic singling may serve as a potential therapy to prevent endothelial dysfunction induced by RBCs in T2D.
  •  
27.
  •  
28.
  • Mahdi, A, et al. (author)
  • Red Blood Cell Peroxynitrite Causes Endothelial Dysfunction in Type 2 Diabetes Mellitus via Arginase
  • 2020
  • In: Cells. - : MDPI AG. - 2073-4409. ; 9:7
  • Journal article (peer-reviewed)abstract
    • We recently showed that red blood cells (RBCs) from patients with type 2 diabetes mellitus (T2DM-RBCs) induce endothelial dysfunction through a mechanism involving arginase I and reactive oxygen species. Peroxynitrite is known to activate arginase in endothelial cells. Whether peroxynitrite regulates arginase activity in RBCs, and whether it is involved in the cross-talk between RBCs and the vasculature in T2DM, is unclear and elusive. The present study was designed to test the hypothesis that endothelial dysfunction induced by T2DM-RBCs is driven by peroxynitrite and upregulation of arginase. RBCs were isolated from patients with T2DM and healthy age matched controls. RBCs were co-incubated with aortae isolated from wild type rats for 18 h in the absence and presence of peroxynitrite scavenger FeTTPS. Evaluation of endothelial function in organ chambers by cumulative addition of acetylcholine as well as measurement of RBC and vessel arginase activity was performed. In another set of experiments, RBCs isolated from healthy subjects (Healthy RBCs) were incubated with the peroxynitrite donor SIN-1 with subsequent evaluation of endothelial function and arginase activity. T2DM-RBCs, but not Healthy RBCs, induced impairment in endothelial function, which was fully reversed by scavenging of RBC but not vascular peroxynitrite with FeTPPS. Arginase activity was up-regulated by the peroxynitrite donor SIN-1 in Healthy RBCs, an effect that was inhibited by FeTTPS. Healthy RBCs co-incubated with aortae in the presence of SIN-1 caused impairment of endothelial function, which was inhibited by FeTTPS or the arginase inhibitor ABH. T2DM-RBCs induced up-regulation of vascular arginase, an effect that was fully inhibited by FeTTPS. Collectively, our data indicate that RBCs impair endothelial function in T2DM via an effect that is driven by a peroxynitrite-mediated increase in arginase activity. This mechanism may be targeted in patients with T2DM for improvement in endothelial function.
  •  
29.
  •  
30.
  •  
31.
  • Mahdi, A, et al. (author)
  • Therapeutic Potential of Sunitinib in Ameliorating Endothelial Dysfunction in Type 2 Diabetic Rats
  • 2022
  • In: Pharmacology. - : S. Karger AG. - 1423-0313 .- 0031-7012. ; 107:3-4, s. 160-166
  • Journal article (peer-reviewed)abstract
    • <b><i>Introduction:</i></b> Sunitinib, a multi-targeted tyrosine kinase receptor inhibitor used to treat renal-cell carcinoma and gastrointestinal stromal tumor, was recently shown to have a beneficial effect on metabolism in type 2 diabetes (T2D). Endothelial dysfunction is a key factor behind macro- and microvascular complications in T2D. The effect of sunitinib on endothelial function in T2D remains, however, unclear. We therefore tested the hypothesis that sunitinib ameliorates endothelial dysfunction in T2D. <b><i>Methods:</i></b> Sunitinib (2 mg/kg/day, by gavage) was administered to T2D Goto-Kakizaki (GK) rats for 6 weeks, while water was given to GK and Wistar rats as controls. Hemodynamic, inflammatory, and metabolic parameters as well as endothelial function were measured. <b><i>Results:</i></b> Systolic, mean arterial blood pressures, plasma tumor necrosis factor α levels, kidney weight to body weight (BW) ratio, and glucose levels were higher, while BW was lower in GK rats than in Wistar rats. Six-week treatment with sunitinib in GK rats did not affect these parameters but suppressed the increase in glucose levels. Endothelium-dependent relaxations were reduced in both aortas and mesenteric arteries isolated from GK as compared to Wistar rats, which was markedly reversed in both types of arteries from GK rats treated with sunitinib. <b><i>Conclusions:</i></b> This study demonstrates that sunitinib has a glucose-lowering effect and ameliorates endothelial dysfunction in both conduit and resistance arteries of GK rats.
  •  
32.
  • Paar, V, et al. (author)
  • Anti-coagulation for COVID-19 treatment: both anti-thrombotic and anti-inflammatory?
  • 2021
  • In: Journal of thrombosis and thrombolysis. - : Springer Science and Business Media LLC. - 1573-742X .- 0929-5305. ; 51:21, s. 226-231
  • Journal article (peer-reviewed)abstract
    • Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has been linked to a higher risk of mortality compared to influenza, which is mainly due to severe secondary diseases, such as acute respiratory distress syndrome (ARDS). In turn, ARDS is characterized by an acute inflammation and an excessive activity of the coagulation cascade, rising the vulnerability for venous thromboembolic events. In order to investigate the relation of inflammation and the influence of coagulation factors on their release, human peripheral mononuclear blood cells (PBMCs) were treated with autologous serum, heparinized plasma and different doses of fibrin. Thereafter, the concentration of pro-inflammatory cytokines and chemokines in the secretome of PBMCs was measured by enzyme-linked immunosorbent assay. Our analyses revealed autologous serum to significantly increase the secretion of cytokines and chemokines after 24 h of incubation time. Furthermore, the addition of fibrin markedly increased the secretion of cytokines and chemokines by PBMCs in a dose-dependent manner. Consequently, in accordance with previous studies, our study outlines that anti-coagulation may constitute a promising tool for the treatment of SARS-CoV-2, reducing both, the cytokine storm, as well as the risk for thrombotic complications.
  •  
33.
  • Pernow, J, et al. (author)
  • Red blood cell dysfunction: a new player in cardiovascular disease
  • 2019
  • In: Cardiovascular research. - : Oxford University Press (OUP). - 1755-3245 .- 0008-6363. ; 115:11, s. 1596-1605
  • Journal article (peer-reviewed)abstract
    • The primary role of red blood cells (RBCs) is to transport oxygen to the tissues and carbon dioxide to the lungs. However, emerging evidence suggests an important role of the RBC beyond being just a passive carrier of the respiratory gases. The RBCs are of importance for redox balance and are actively involved in the regulation of vascular tone, especially during hypoxic and ischaemic conditions by the release of nitric oxide (NO) bioactivity and adenosine triphosphate. The role of the RBC has gained further interest after recent discoveries demonstrating a markedly altered function of the cell in several pathological conditions. Such alterations include increased adhesion capability, increased formation of reactive oxygen species as well as altered protein content and enzymatic activities. Beyond signalling increased oxidative stress, the altered function of RBCs is characterized by reduced export of NO bioactivity regulated by increased arginase activity. Of further importance, the altered function of RBCs has important implications for several cardiovascular disease conditions. RBCs have been shown to induce endothelial dysfunction and to increase cardiac injury during ischaemia-reperfusion in diabetes mellitus. Finally, this new knowledge has led to novel therapeutic possibilities to intervene against cardiovascular disease by targeting signalling in the RBC. These novel data open up an entirely new view on the underlying pathophysiological mechanisms behind the cardiovascular disease processes in diabetes mellitus mediated by the RBC. This review highlights the current knowledge regarding the role of RBCs in cardiovascular regulation with focus on their importance for cardiovascular dysfunction in pathological conditions and therapeutic possibilities for targeting RBCs in cardiovascular disease.
  •  
34.
  •  
35.
  •  
36.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  •  
42.
  • Wernly, B, et al. (author)
  • More purinergic receptors deserve attention as therapeutic targets for the treatment of cardiovascular disease
  • 2020
  • In: American journal of physiology. Heart and circulatory physiology. - : American Physiological Society. - 1522-1539 .- 0363-6135. ; 319:4, s. H723-H729
  • Journal article (peer-reviewed)abstract
    • Cardiovascular disease is a major cause of morbidity and mortality worldwide. Innovative new treatment options for this cardiovascular pandemic are urgently needed. Activation of purinergic receptors (PRs) is critically involved in the development and progression of cardiovascular disease including atherosclerosis, ischemic heart disease, hypertension, and diabetes. PRs have been targeted for the treatment of several cardiovascular diseases in a clinical setting. The P2Y12R antagonists such as clopidogrel, ticagrelor, and others are the most successful class of purinergic drugs targeting platelets for the treatment of acute coronary syndrome. In addition to targeting platelets, ticagrelor may exert P2Y12R-independent effect by targeting erythrocyte-mediated purinergic activation. The partial A1R agonist neladenoson and the A2AR agonist regadenoson have been applied in cardiovascular medicine. In experimental studies, many other PRs have been shown to play a significant role in the development and progression of cardiovascular diseases, and targeting these receptors have resulted in promising outcomes. Therefore, many of these PRs including A2BR, A3R, P2X3R, P2X4R, P2X7R, P2Y1R, P2Y4R, P2Y6R, and P2Y11R can be considered as therapeutic targets. However, the multitude of PR subtypes expressed in different cells of the cardiovascular system may constitute a challenge whether single or multiple receptors should be targeted at the same time for the best efficacy. The present review discusses the promising purinergic drugs used in clinical studies for the treatment of cardiovascular disease. We also update experimental evidence for many other PRs that can be considered as therapeutic targets for future drug development.
  •  
43.
  • Wernly, B, et al. (author)
  • Ticagrelor: a cardiometabolic drug targeting erythrocyte-mediated purinergic signaling?
  • 2021
  • In: American journal of physiology. Heart and circulatory physiology. - : American Physiological Society. - 1522-1539 .- 0363-6135. ; 320:1, s. H90-H94
  • Journal article (peer-reviewed)abstract
    • Cardiometabolic diseases lead to vascular complications, which cause increasing morbidity and mortality worldwide. The underlying mechanisms are multifactorial and complex but may involve altered purinergic signaling that significantly contributes to cardiovascular dysfunction. Ticagrelor is a successful purinergic drug directly targeting ADP-mediated P2Y12R signaling for platelet aggregation and is widely used in patients with acute coronary syndrome. In addition, ticagrelor can target red blood cells (RBCs) to release ATP and inhibit adenosine uptake by RBCs, which subsequently activate purinergic signaling. This involvement in purinergic signaling may allow ticagrelor to mediate pleiotropic effects and contribute to the beneficial cardiovascular outcomes observed in clinical studies. Recent studies have established a novel function of RBCs, which is that RBCs act as disease mediators for the development of cardiovascular complications in type 2 diabetes (T2D). RBC-released ATP is defective in T2D, which has implications for the induction of vascular dysfunction by dysregulating purinergic signaling. Ticagrelor might target RBCs and restore the bioavailability of ATP and adenosine, thereby attenuating cardiovascular complications. The present perspective discusses the pleiotropic effect of ticagrelor, with a focus on the possibility of ticagrelor for the treatment of cardiometabolic complications by targeting RBCs and initiating purinergic activation. A better understanding of the proposed cardiometabolic effects could support novel clinical indications for ticagrelor application.
  •  
44.
  •  
45.
  •  
46.
  • Zhang, Y, et al. (author)
  • Adenosine and adenosine receptor-mediated action in coronary microcirculation
  • 2021
  • In: Basic research in cardiology. - : Springer Science and Business Media LLC. - 1435-1803 .- 0300-8428. ; 116:1, s. 22-
  • Journal article (peer-reviewed)abstract
    • Adenosine is an ubiquitous extracellular signaling molecule and plays a fundamental role in the regulation of coronary microcirculation through activation of adenosine receptors (ARs). Adenosine is regulated by various enzymes and nucleoside transporters for its balance between intra- and extracellular compartments. Adenosine-mediated coronary microvascular tone and reactive hyperemia are through receptors mainly involving A2AR activation on both endothelial and smooth muscle cells, but also involving interaction among other ARs. Activation of ARs further stimulates downstream targets of H2O2, KATP, KV and KCa2+ channels leading to coronary vasodilation. An altered adenosine-ARs signaling in coronary microcirculation has been observed in several cardiovascular diseases including hypertension, diabetes, atherosclerosis and ischemic heart disease. Adenosine as a metabolite and its receptors have been studied for its both therapeutic and diagnostic abilities. The present review summarizes important aspects of adenosine metabolism and AR-mediated actions in the coronary microcirculation.
  •  
47.
  •  
48.
  •  
49.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 62

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view