SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zhu KY) "

Search: WFRF:(Zhu KY)

  • Result 1-28 of 28
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Aamodt, K., et al. (author)
  • The ALICE experiment at the CERN LHC
  • 2008
  • In: Journal of Instrumentation. - 1748-0221. ; 3:S08002
  • Research review (peer-reviewed)abstract
    • ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries, Its overall dimensions are 16 x 16 x 26 m(3) with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.
  •  
9.
  • Carlstrom, KE, et al. (author)
  • Gsta4 controls apoptosis of differentiating adult oligodendrocytes during homeostasis and remyelination via the mitochondria-associated Fas-Casp8-Bid-axis
  • 2020
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 4071-
  • Journal article (peer-reviewed)abstract
    • Arrest of oligodendrocyte (OL) differentiation and remyelination following myelin damage in multiple sclerosis (MS) is associated with neurodegeneration and clinical worsening. We show that Glutathione S-transferase 4α (Gsta4) is highly expressed during adult OL differentiation and that Gsta4 loss impairs differentiation into myelinating OLs in vitro. In addition, we identify Gsta4 as a target of both dimethyl fumarate, an existing MS therapy, and clemastine fumarate, a candidate remyelinating agent in MS. Overexpression of Gsta4 reduces expression of Fas and activity of the mitochondria-associated Casp8-Bid-axis in adult oligodendrocyte precursor cells, leading to improved OL survival during differentiation. The Gsta4 effect on apoptosis during adult OL differentiation was corroborated in vivo in both lysolecithin-induced demyelination and experimental autoimmune encephalomyelitis models, where Casp8 activity was reduced in Gsta4-overexpressing OLs. Our results identify Gsta4 as an intrinsic regulator of OL differentiation, survival and remyelination, as well as a potential target for future reparative MS therapies.
  •  
10.
  •  
11.
  • Chen, Y, et al. (author)
  • miR-124/VAMP3 is a novel therapeutic target for mitigation of surgical trauma-induced microglial activation
  • 2019
  • In: Signal transduction and targeted therapy. - : Springer Science and Business Media LLC. - 2059-3635. ; 4, s. 27-
  • Journal article (peer-reviewed)abstract
    • Activation of microglia and the subsequently elevated inflammatory cytokine release in the brain during surgery predispose individuals to cognitive dysfunction, also known as postoperative cognitive dysfunction (POCD). miR-124 is one of the most abundant microRNAs in the brain that regulates microglial function. Elucidating the role of miR-124 in microglial activation in the context of surgery may therefore promote understanding of as well as therapeutic development for post-surgical disorders involving microglial activation. The downstream targets of miR-124 were investigated using bioinformatic screening and dual-luciferase reporter assay validation, and vesicle-associated membrane protein 3 (VAMP3) was identified as a potential target. The kinetics of miR-124/VAMP3 expression was first examined in vitro in microglial cells (primary microglia and BV2 microglial cells) following lipopolysaccharide (LPS) stimulation. LPS induced a time-dependent decrease of miR-124 and upregulated the expression of VAMP3. Manipulating miR-124/VAMP3 expression by using miR-124 mimics or VAMP3-specific siRNA in LPS-stimulated BV2 microglial cells inhibited BV2 microglial activation-associated inflammatory cytokine release. To further examine the role of miR-124/VAMP3 in a surgical setting, we employed a rat surgical trauma model. Significant microglial activation and altered miR-124/VAMP3 expression were observed following surgical trauma. We also altered miR-124/VAMP3 expression in the rat surgical trauma model by administration of exogenous miR-124 and by using electroacupuncture, which is a clinically applicable treatment that modulates microglial function and minimizes postoperative disorders. We determined that electroacupuncture treatment specifically increases the expression of miR-124 in the hypothalamus and hippocampus. Increased miR-124 expression with a concomitant decrease in VAMP3 expression resulted in decreased inflammatory cytokine release related to microglial activation post-surgery. Our study indicates that miR-124/VAMP3 is involved in surgery-induced microglial activation and that targeting miR-124/VAMP3 could be a potential therapeutic strategy for postoperative disorders involving microglial activation.
  •  
12.
  •  
13.
  •  
14.
  • Han, JM, et al. (author)
  • Sex-Specific Effects of Microglia-Like Cell Engraftment during Experimental Autoimmune Encephalomyelitis
  • 2020
  • In: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 21:18
  • Journal article (peer-reviewed)abstract
    • Multiple sclerosis (MS) is a chronic neuroinflammatory disorder of the central nervous system (CNS) that usually presents in young adults and predominantly in females. Microglia, a major resident immune cell in the CNS, are critical players in both CNS homeostasis and disease. We have previously demonstrated that microglia can be efficiently depleted by the administration of tamoxifen in Cx3cr1CreER/+Rosa26DTA/+ mice, with ensuing repopulation deriving from both the proliferation of residual CNS resident microglia and the engraftment of peripheral monocyte-derived microglia-like cells. In this study, tamoxifen was administered to Cx3cr1CreER/+Rosa26DTA/+ and Cx3cr1CreER/+ female and male mice. Experimental autoimmune encephalomyelitis (EAE), a widely used animal model of MS, was induced by active immunization with myelin oligodendrocyte glycoprotein (MOG) one month after tamoxifen injections in Cx3cr1CreER/+Rosa26DTA/+ mice and Cx3cr1CreER/+ mice, a time point when the CNS niche was colonized by microglia derived from both CNS microglia and peripherally-derived macrophages. We demonstrate that engraftment of microglia-like cells following microglial depletion exacerbated EAE in Cx3cr1CreER/+Rosa26DTA/+ female mice as assessed by clinical symptoms and the expression of CNS inflammatory factors, but these findings were not evident in male mice. Higher major histocompatibility complex class II expression and cytokine production in the female CNS contributed to the sex-dependent EAE severity in mice following engraftment of microglia-like cells. An underestimated yet marked sex-dependent microglial activation pattern may exist in the injured CNS during EAE.
  •  
15.
  • Han, JM, et al. (author)
  • Underestimated Peripheral Effects Following Pharmacological and Conditional Genetic Microglial Depletion
  • 2020
  • In: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 21:22
  • Journal article (peer-reviewed)abstract
    • Microglia, predominant parenchymal resident macrophages in the central nervous system (CNS), are crucial players in neurodevelopment and CNS homeostasis. In disease conditions, pro-inflammatory microglia predominate over their regulatory counterparts, and are thus a potential immunotherapeutic target. It has been well documented that microglia can be effectively depleted using both conditional genetic Cx3cr1Cre-diphtheria toxin receptor (DTR)/diphtheria toxin subunit A (DTA) animal models and pharmacological colony-stimulating factor 1 receptor (CSF1R) inhibitors. Recent advances using these approaches have expanded our knowledge of the multitude of tasks conducted by microglia in both homeostasis and diseases. Importantly, experimental microglial depletion has been proven to exert neuroprotective effects in an increasing number of disease models, mostly explained by reduced neuroinflammation. However, the comprehensive effects of additional targets such as circulating monocytes and peripheral tissue macrophages during microglial depletion periods have not been investigated widely, and for those studies addressing the issue the conclusions are mixed. In this study, we demonstrate that experimental microglial depletion using both Cx3cr1CreER/+Rosa26DTA/+ mice and different doses of CSF1R inhibitor PLX3397 exert crucial influences on circulating monocytes and peripheral tissue macrophages. Our results suggest that effects on peripheral immunity should be considered both in interpretation of microglial depletion studies, and especially in the potential translation of microglial depletion and replacement therapies.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  • Zou, ZF, et al. (author)
  • Tyrosine Kinase Receptors Axl and MerTK Mediate the Beneficial Effect of Electroacupuncture in a Cuprizone-Induced Demyelinating Model
  • 2020
  • In: Evidence-based complementary and alternative medicine : eCAM. - : Hindawi Limited. - 1741-427X .- 1741-4288. ; 2020, s. 3205176-
  • Journal article (peer-reviewed)abstract
    • Electroacupuncture has been shown to promote remyelination in a demyelinating model of multiple sclerosis (MS) through enhanced microglial clearance of degraded myelin debris. However, the mechanisms involved in this process are yet to be clearly elucidated. It has been revealed that TAM receptor tyrosine kinases (Tyro3, Axl, and MerTK) play pivotal roles in regulating multiple features of microglia, including the phagocytic function and myelin clearance. Therefore, the aim of this study is to further confirm whether electroacupuncture improves functional recovery in this model and to characterise the involvement of the TAM receptor during this process. In addition to naive control mice, a cuprizone-induced demyelinating model was established, and long-term electroacupuncture treatment was administrated. To evaluate the efficiency of functional recovery following demyelination, we performed beam-walking test and rotarod performance test; to objectify the degree of remyelination, we performed transmission electron microscopy and protein quantification of mature oligodendrocyte markers. Oil Red O staining was used to evaluate the deposit of myelin debris. We confirmed that, in cuprizone-treated mice, electroacupuncture significantly ameliorates motor-coordinative dysfunction and counteracts demyelinating processes, with less deposit of myelin debris accumulating in the corpus callosum. Surprisingly, mRNA expression of TAM receptors was significantly upregulated after electroacupuncture treatment, and we further confirmed an increased protein expression of Axl and MerTK after electroacupuncture treatment, indicating their involvement during electroacupuncture treatment. Finally, LDC1267, a selective TAM kinase inhibitor, abolished the therapeutic effect of electroacupuncture on motor-coordinative dysfunction. Overall, our data demonstrate that electroacupuncture could mitigate the progression of demyelination by enhancing the TAM receptor expression to facilitate the clearance of myelin debris. Our results also suggest that electroacupuncture may be a potential curative treatment for MS patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-28 of 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view