SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zhukova Lilia) "

Search: WFRF:(Zhukova Lilia)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gielnik, Maciej, et al. (author)
  • The engineered peptide construct NCAM1-Aβ inhibits fibrillization of the human prion protein (PrP)
  • 2022
  • In: Acta Biochimica Polonica. - : Polskie Towarzystwo Biochemiczne (Polish Biochemical Society). - 0001-527X .- 1734-154X. ; 69:1, s. 257-261
  • Journal article (peer-reviewed)abstract
    • In prion diseases, the prion protein (PrP) becomes misfolded and forms fibrillar aggregates that are responsible for prion infectivity and pathology. So far, no drug or treatment procedures have been approved for prion disease treatment. We have previously shown that engineered cell-penetrating peptide constructs can reduce the amount of prion aggregates in infected cells. However, the molecular mechanism underlying this effect is unknown. Here, we use atomic force microscopy (AFM) imaging to show that the amyloid aggregation and fibrillization of the human PrP protein can be inhibited by equimolar amounts of the 25 residues long engineered peptide construct NCAM1-Aβ. 
  •  
2.
  • Gielnik, Maciej, et al. (author)
  • Zn(II) binding causes interdomain changes in the structure and flexibility of the human prion protein
  • 2021
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Journal article (peer-reviewed)abstract
    • The cellular prion protein (PrP(C)) is a mainly alpha-helical 208-residue protein located in the pre- and postsynaptic membranes. For unknown reasons, PrP(C) can undergo a structural transition into a toxic, beta-sheet rich scrapie isoform (PrPSc) that is responsible for transmissible spongiform encephalopathies (TSEs). Metal ions seem to play an important role in the structural conversion. PrP(C) binds Zn(II) ions and may be involved in metal ion transport and zinc homeostasis. Here, we use multiple biophysical techniques including optical and NMR spectroscopy, molecular dynamics simulations, and small angle X-ray scattering to characterize interactions between human PrP(C) and Zn(II) ions. Binding of a single Zn(II) ion to the PrP(C) N-terminal domain via four His residues from the octarepeat region induces a structural transition in the C-terminal alpha-helices 2 and 3, promotes interaction between the N-terminal and C-terminal domains, reduces the folded protein size, and modifies the internal structural dynamics. As our results suggest that PrP(C) can bind Zn(II) under physiological conditions, these effects could be important for the physiological function of PrP(C).
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view