SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zielke Matthias) "

Search: WFRF:(Zielke Matthias)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Cornelissen, Johannes H C, et al. (author)
  • Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes
  • 2007
  • In: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 10:7, s. 619-627
  • Journal article (peer-reviewed)abstract
    • Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide.Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.
  •  
2.
  • Hibar, Derrek P., et al. (author)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
3.
  • Rozema, Jelte, et al. (author)
  • Stratospheric ozone depletion: High arctic tundra plant growth on Svalbard is not affected by enhanced UV-B after 7 years of UV-B supplementation in the field
  • 2006
  • In: Plant Ecology. - : Springer Science and Business Media LLC. - 1573-5052 .- 1385-0237. ; 182:1-2, s. 121-135
  • Journal article (peer-reviewed)abstract
    • The response of tundra plants to enhanced UV-B radiation simulating 15 and 30% ozone depletion was studied at two high arctic sites (Isdammen and Adventdalen, 78 degrees N, Svalbard).The set-up of the UV-B supplementation systems is described, consisting of large and small UV lamp arrays, installed in 1996 and 2002. After 7 years of exposure to enhanced UV-B radiation, plant cover, density, morphological (leaf fresh and dry weight, leaf thickness, leaf area, reproductive and ecophysiological parameters leaf UV-B absorbance, leaf phenolic content, leaf water content) were not affected by enhanced UV-B radiation. DNA damage in the leaves was not increased with enhanced UV-B in Salix polaris and Cassiope tetragona. DNA damage in Salix polaris leaves was higher than in leaves of C. tetragona. The length of male gametophyte moss plants of Polytrichum hyperboreum was reduced with elevated UV-B as well as the number of Pedicularis hirsuta plants per plot, but the inflorescence length of Bistorta vivipara was not significantly affected. We discuss the possible causes of tolerance of tundra plants to UV-B (absence of response to enhanced UV-B) in terms of methodology (supplementation versus exclusion), ecophysiological adaptations to UV-B and the biogeographical history of polar plants.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3
Type of publication
journal article (3)
Type of content
peer-reviewed (3)
Author/Editor
Franke, Barbara (1)
Molau, Ulf, 1951 (1)
Schmidt, Inger K. (1)
Welker, Jeffrey M. (1)
Westman, Eric (1)
Tsolaki, Magda (1)
show more...
Ching, Christopher R ... (1)
Agartz, Ingrid (1)
Brouwer, Rachel M (1)
Cannon, Dara M (1)
McDonald, Colm (1)
Melle, Ingrid (1)
Westlye, Lars T (1)
Thompson, Paul M (1)
Andreassen, Ole A (1)
Lindblad, Karin (1)
Andersson, Micael (1)
Axelsson, Tomas (1)
Nyberg, Lars (1)
Karlsson, Staffan (1)
van der Wee, Nic J. ... (1)
Singleton, Andrew (1)
Arepalli, Sampath (1)
Ikram, M. Arfan (1)
Amin, Najaf (1)
van Duijn, Cornelia ... (1)
Chen, Qiang (1)
Rotter, Jerome I. (1)
Soininen, Hilkka (1)
Weale, Michael E. (1)
Weinberger, Daniel R (1)
Alatalo, Juha, 1966- (1)
Jägerbrand, Annika K ... (1)
Michelsen, Anders (1)
Totland, O (1)
de Geus, Eco J. C. (1)
Martin, Nicholas G. (1)
Boomsma, Dorret I. (1)
van Bodegom, Peter M ... (1)
Heslenfeld, Dirk J. (1)
Hardy, John (1)
van der Meer, Dennis (1)
Djurovic, Srdjan (1)
Doan, Nhat Trung (1)
Meyer-Lindenberg, An ... (1)
Ramasamy, Adaikalava ... (1)
Thalamuthu, Anbupala ... (1)
Cichon, Sven (1)
Hashimoto, Ryota (1)
Rietschel, Marcella (1)
show less...
University
Uppsala University (2)
University of Gothenburg (1)
Umeå University (1)
Stockholm University (1)
University of Gävle (1)
Mälardalen University (1)
show more...
Jönköping University (1)
Lund University (1)
Karolinska Institutet (1)
VTI - The Swedish National Road and Transport Research Institute (1)
show less...
Language
English (3)
Research subject (UKÄ/SCB)
Natural sciences (3)
Medical and Health Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view