SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zinn Joel C.) "

Search: WFRF:(Zinn Joel C.)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abolfathi, Bela, et al. (author)
  • The Fourteenth Data Release of the Sloan Digital Sky Survey : First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment
  • 2018
  • In: Astrophysical Journal Supplement Series. - : IOP Publishing Ltd. - 0067-0049 .- 1538-4365. ; 235:2
  • Journal article (peer-reviewed)abstract
    • The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014-2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V.
  •  
2.
  • Aguado, D. S., et al. (author)
  • The Fifteenth Data Release of the Sloan Digital Sky Surveys : First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library
  • 2019
  • In: Astrophysical Journal Supplement Series. - : Institute of Physics Publishing (IOPP). - 0067-0049 .- 1538-4365. ; 240:2
  • Journal article (peer-reviewed)abstract
    • Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July-2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA-we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020-2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data.
  •  
3.
  • Buder, Sven, et al. (author)
  • The GALAH Survey : second data release
  • 2018
  • In: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 478:4, s. 4513-4552
  • Journal article (peer-reviewed)abstract
    • The Galactic Archaeology with HERMES (GALAH) survey is a large-scale stellar spectroscopic survey of the Milky Way, designed to deliver complementary chemical information to a large number of stars covered by the Gaia mission. We present the GALAH second public data release (GALAH DR2) containing 342 682 stars. For these stars, the GALAH collaboration provides stellar parameters and abundances for up to 23 elements to the community. Here we present the target selection, observation, data reduction, and detailed explanation of how the spectra were analysed to estimate stellar parameters and element abundances. For the stellar analysis, we have used a multistep approach. We use the physics-driven spectrum synthesis of Spectroscopy Made Easy (SME) to derive stellar labels (T-eff, log g, [Fe/H], [X/Fe], v(mic), vsin i, AKS) for a representative training set of stars. This information is then propagated to the whole sample with the data-driven method of The Cannon. Special care has been exercised in the spectral synthesis to only consider spectral lines that have reliable atomic input data and are little affected by blending lines. Departures from local thermodynamic equilibrium (LTE) are considered for several key elements, including Li, O, Na, Mg, Al, Si, and Fe, using 1D MARCS stellar atmosphere models. Validation tests including repeat observations, Gaia benchmark stars, open and globular clusters, and K2 asteroseismic targets lend confidence to our methods and results. Combining the GALAH DR2 catalogue with the kinematic information from Gaia will enable a wide range of Galactic Archaeology studies, with unprecedented detail, dimensionality, and scope.
  •  
4.
  • Sharma, Sanjib, et al. (author)
  • Fundamental relations for the velocity dispersion of stars in the Milky Way
  • 2021
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 506:2, s. 1761-1776
  • Journal article (peer-reviewed)abstract
    • We explore the fundamental relations governing the radial and vertical velocity dispersions of stars in the Milky Way, from combined studies of complementary surveys including GALAH, LAMOST, APOGEE, the NASA Kepler and K2 missions, and Gaia DR2. We find that different stellar samples, even though they target different tracer populations and employ a variety of age estimation techniques, follow the same set of fundamental relations. We provide the clearest evidence to date that, in addition to the well-known dependence on stellar age, the velocity dispersions of stars depend on orbital angular momentum Lz, metallicity, and height above the plane |z|, and are well described by a multiplicatively separable functional form. The dispersions have a power-law dependence on age with exponents of 0.441 ± 0.007 and 0.251 ± 0.006 for σz and σR, respectively, and the power law is valid even for the oldest stars. For the solar neighbourhood stars, the apparent break in the power law for older stars, as seen in previous studies, is due to the anticorrelation of Lz with age. The dispersions decrease with increasing Lz until we reach the Sun’s orbital angular momentum, after which σz increases (implying flaring in the outer disc) while σR flattens. For a given age, the dispersions increase with decreasing metallicity, suggesting that the dispersions increase with birth radius. The dispersions also increase linearly with |z|. The same set of relations that work in the solar neighbourhood also work for stars between 3 < R/kpc < 20. Finally, the high-[α/Fe] stars follow the same relations as the low-[α/Fe] stars.
  •  
5.
  • Sharma, Sanjib, et al. (author)
  • The GALAH Survey : dependence of elemental abundances on age and metallicity for stars in the Galactic disc
  • 2022
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 510:1, s. 734-752
  • Journal article (peer-reviewed)abstract
    • Using data from the GALAH survey, we explore the dependence of elemental abundances on stellar age and metallicity among Galactic disc stars. We find that the abundance of most elements can be predicted from age and [Fe/H] with an intrinsic scatter of about 0.03 dex. We discuss the possible causes for the existence of the abundance–age–metallicity relations. Using a stochastic chemical enrichment scheme that takes the volume of supernovae remnants into account, we show the intrinsic scatter is expected to be small, about 0.05 dex or even smaller if there is additional mixing in the ISM. Elemental abundances show trends with both age and metallicity and the relationship is well described by a simple model in which the dependence of abundance ([X/Fe]) on age and [Fe/H] are additively separable. Elements can be grouped based on the direction of their abundance gradient in the (age,[Fe/H]) plane and different groups can be roughly associated with three distinct nucleosynthetic production sites, the exploding massive stars, the exploding white dwarfs, and the AGB stars. However, the abundances of some elements, like Co, La, and Li, show large scatter for a given age and metallicity, suggesting processes other than simple Galactic chemical evolution are at play. We also compare the abundance trends of main-sequence turn-off (MSTO) stars against that of giants, whose ages were estimated using asteroseismic information from the K2 mission. For most elements, the trends of MSTO stars are similar to that of giants. The existence of abundance relations implies that we can estimate the age and birth radius of disc stars, which is important for studying the dynamic and chemical evolution of the Galaxy.
  •  
6.
  • Pinsonneault, Marc H., et al. (author)
  • The Second APOKASC Catalog : The Empirical Approach
  • 2018
  • In: Astrophysical Journal Supplement Series. - : Institute of Physics Publishing (IOPP). - 0067-0049 .- 1538-4365. ; 239:2
  • Journal article (peer-reviewed)abstract
    • We present a catalog of stellar properties for a large sample of 6676 evolved stars with Apache Point Observatory Galactic Evolution Experiment spectroscopic parameters and Kepler asteroseismic data analyzed using five independent techniques. Our data include evolutionary state, surface gravity, mean density, mass, radius, age, and the spectroscopic and asteroseismic measurements used to derive them. We employ a new empirical approach for combining asteroseismic measurements from different methods, calibrating the inferred stellar parameters, and estimating uncertainties. With high statistical significance, we find that asteroseismic parameters inferred from the different pipelines have systematic offsets that are not removed by accounting for differences in their solar reference values. We include theoretically motivated corrections to the large frequency spacing (Av) scaling relation, and we calibrate the zero-point of the frequency of the maximum power (vmax) relation to be consistent with masses and radii for members of star clusters. For most targets, the parameters returned by different pipelines are in much better agreement than would be expected from the pipeline-predicted random errors, but 22% of them had at least one method not return a result and a much larger measurement dispersion. This supports the usage of multiple analysis techniques for asteroseismic stellar population studies. The measured dispersion in mass estimates for fundamental calibrators is consistent with our error model, which yields median random and systematic mass uncertainties for RGB stars of order 4%. Median random and systematic mass uncertainties are at the 9% and 8% level, respectively, for red clump stars.
  •  
7.
  • Schonhut-Stasik, Jessica, et al. (author)
  • The APO-K2 Catalog. I. ∼7500 Red Giants with Fundamental Stellar Parameters from APOGEE DR17 Spectroscopy and K2-GAP Asteroseismology
  • 2024
  • In: Astronomical Journal. - : Institute of Physics Publishing (IOPP). - 0004-6256 .- 1538-3881. ; 167:2
  • Journal article (peer-reviewed)abstract
    • We present a catalog of fundamental stellar properties for similar to 7500 evolved stars, including stellar radii and masses, determined from the combination of spectroscopic observations from the Apache Point Observatory Galactic Evolution Experiment, part of the Sloan Digital Sky Survey IV, and asteroseismology from K2. The resulting APO-K2 catalog provides spectroscopically derived temperatures and metallicities, asteroseismic global parameters, evolutionary states, and asteroseismically derived masses and radii. Additionally, we include kinematic information from Gaia. We investigate the multidimensional space of abundance, stellar mass, and velocity with an eye toward applications in Galactic archaeology. The APO-K2 sample has a large population of low-metallicity stars (similar to 288 with [M/H] <= -1), and their asteroseismic masses are larger than astrophysical estimates. We argue that this may reflect offsets in the adopted fundamental temperature scale for metal-poor stars rather than metallicity-dependent issues with interpreting asteroseismic data. We characterize the kinematic properties of the population as a function of alpha enhancement and position in the disk and identify those stars in the sample that are candidate components of the Gaia-Enceladus merger. Importantly, we characterize the selection function for the APO-K2 sample as a function of metallicity, radius, mass, nu max , color, and magnitude referencing Galactic simulations and target selection criteria to enable robust statistical inferences with the catalog.
  •  
8.
  • Sharma, Sanjib, et al. (author)
  • The K2-HERMES Survey : age and metallicity of the thick disc
  • 2019
  • In: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 490:4, s. 5335-5352
  • Journal article (peer-reviewed)abstract
    • Asteroseismology is a promising tool to study Galactic structure and evolution because it can probe the ages of stars. Earlier attempts comparing seismic data from the Kepler satellite with predictions from Galaxy models found that the models predicted more low-mass stars compared to the observed distribution of masses. It was unclear if the mismatch was due to inaccuracies in the Galactic models, or the unknown aspects of the selection function of the stars. Using new data from the K2 mission, which has a well-defined selection function, we find that an oldmetal-poor thick disc, as used in previous Galactic models, is incompatible with the asteroseismic information. We use an importance-sampling framework, which takes the selection function into account, to fit for the metallicities of a population synthesis model using spectroscopic data. We show that spectroscopic measurements of [Fe/H] and [alpha/Fe] elemental abundances from the GALAH survey indicate a mean metallicity of log (Z/Z(circle dot)) = -0.16 for the thick disc. Here Z is the effective solar-scaled metallicity, which is a function of [Fe/H] and [alpha/Fe]. With the revised disc metallicities, for the first time, the theoretically predicted distribution of seismic masses show excellent agreement with the observed distribution of masses. This indirectly verifies that the asteroseismic mass scaling relation is good to within five per cent. Assuming the asteroseismic scaling relations are correct, we estimate the mean age of the thick disc to be about 10 Gyr, in agreement with the traditional idea of an old alpha-enhanced thick disc.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view