SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(van Meurs J.) "

Search: WFRF:(van Meurs J.)

  • Result 1-50 of 50
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ramdas, S., et al. (author)
  • A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids
  • 2022
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 109:8, s. 1366-1387
  • Journal article (peer-reviewed)abstract
    • A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.
  •  
2.
  • Kanoni, Stavroula, et al. (author)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • In: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Journal article (peer-reviewed)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
3.
  • Hop, Paul J., et al. (author)
  • Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS
  • 2022
  • In: Science Translational Medicine. - : American Association for the Advancement of Science. - 1946-6234 .- 1946-6242. ; 14:633
  • Journal article (peer-reviewed)abstract
    • Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an estimated heritability between 40 and 50%. DNA methylation patterns can serve as proxies of (past) exposures and disease progression, as well as providing a potential mechanism that mediates genetic or environmental risk. Here, we present a blood-based epigenome-wide association study meta-analysis in 9706 samples passing stringent quality control (6763 patients, 2943 controls). We identified a total of 45 differentially methylated positions (DMPs) annotated to 42 genes, which are enriched for pathways and traits related to metabolism, cholesterol biosynthesis, and immunity. We then tested 39 DNA methylation-based proxies of putative ALS risk factors and found that high-density lipoprotein cholesterol, body mass index, white blood cell proportions, and alcohol intake were independently associated with ALS. Integration of these results with our latest genome-wide association study showed that cholesterol biosynthesis was potentially causally related to ALS. Last, DNA methylation at several DMPs and blood cell proportion estimates derived from DNA methylation data were associated with survival rate in patients, suggesting that they might represent indicators of underlying disease processes potentially amenable to therapeutic interventions.
  •  
4.
  • Speliotes, Elizabeth K., et al. (author)
  • Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 937-948
  • Journal article (peer-reviewed)abstract
    • Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and ~2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 × 10−8), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.
  •  
5.
  •  
6.
  •  
7.
  • Porcu, E, et al. (author)
  • Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits
  • 2019
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 3300-
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have identified thousands of variants associated with complex traits, but their biological interpretation often remains unclear. Most of these variants overlap with expression QTLs, indicating their potential involvement in regulation of gene expression. Here, we propose a transcriptome-wide summary statistics-based Mendelian Randomization approach (TWMR) that uses multiple SNPs as instruments and multiple gene expression traits as exposures, simultaneously. Applied to 43 human phenotypes, it uncovers 3,913 putatively causal gene–trait associations, 36% of which have no genome-wide significant SNP nearby in previous GWAS. Using independent association summary statistics, we find that the majority of these loci were missed by GWAS due to power issues. Noteworthy among these links is educational attainment-associated BSCL2, known to carry mutations leading to a Mendelian form of encephalopathy. We also find pleiotropic causal effects suggestive of mechanistic connections. TWMR better accounts for pleiotropy and has the potential to identify biological mechanisms underlying complex traits.
  •  
8.
  •  
9.
  • Heid, Iris M, et al. (author)
  • Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 949-960
  • Journal article (peer-reviewed)abstract
    • Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10⁻⁹ to P = 1.8 × 10⁻⁴⁰) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10⁻³ to P = 1.2 × 10⁻¹³). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
  •  
10.
  • Berndt, Sonja I., et al. (author)
  • Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture
  • 2013
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:5, s. 501-U69
  • Journal article (peer-reviewed)abstract
    • Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.
  •  
11.
  • Lango Allen, Hana, et al. (author)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height.
  • 2010
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 467:7317, s. 832-8
  • Journal article (peer-reviewed)abstract
    • Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
  •  
12.
  •  
13.
  • Elks, Cathy E, et al. (author)
  • Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:12, s. 1077-85
  • Journal article (peer-reviewed)abstract
    • To identify loci for age at menarche, we performed a meta-analysis of 32 genome-wide association studies in 87,802 women of European descent, with replication in up to 14,731 women. In addition to the known loci at LIN28B (P = 5.4 × 10⁻⁶⁰) and 9q31.2 (P = 2.2 × 10⁻³³), we identified 30 new menarche loci (all P < 5 × 10⁻⁸) and found suggestive evidence for a further 10 loci (P < 1.9 × 10⁻⁶). The new loci included four previously associated with body mass index (in or near FTO, SEC16B, TRA2B and TMEM18), three in or near other genes implicated in energy homeostasis (BSX, CRTC1 and MCHR2) and three in or near genes implicated in hormonal regulation (INHBA, PCSK2 and RXRG). Ingenuity and gene-set enrichment pathway analyses identified coenzyme A and fatty acid biosynthesis as biological processes related to menarche timing.
  •  
14.
  • Penston, M. V., et al. (author)
  • The extended narrow line region of NGC 4151. I. Emission line ratios and their implications
  • 1990
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 236:1, s. 53-6262
  • Journal article (peer-reviewed)abstract
    • The paper presents the first results from long-slit spectra of the Seyfert galaxy NGC 4151 which give average diagnostic ratios of weak lines in the extended narrow line region (ENLR) of that galaxy and the first direct density measurement in an ENLR. These data confirm that the ENLR is kinematically undisturbed gas in the disc of the galaxy which is illuminated by an ionizing continuum stronger by a factor of 13 than a power law interpolated between observed ultraviolet and X-ray fluxes. Explanations of this apparent excess include a hot thermal continuum, time variations and an anisotropic radiation field. The authors give reasons for favouring anisotropy which might be caused by shadowing by a thick accretion disc or by relativistic beaming. Shadowing by a molecular torus is unlikely, given the absence of an infrared signal from the reradiated flux absorbed by any torus. Anisotropy would have important implications for the bolometric luminosity and nature of active galactic nuclei
  •  
15.
  •  
16.
  • Kato, Norihiro, et al. (author)
  • Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation
  • 2015
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 47:11, s. 1282-1293
  • Journal article (peer-reviewed)abstract
    • We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10−11 to 5.0 × 10−21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10−6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation.
  •  
17.
  • Liu, C, et al. (author)
  • A DNA methylation biomarker of alcohol consumption.
  • 2018
  • In: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 23, s. 422-433
  • Journal article (peer-reviewed)abstract
    • The lack of reliable measures of alcohol intake is a major obstacle to the diagnosis and treatment of alcohol-related diseases. Epigenetic modifications such as DNA methylation may provide novel biomarkers of alcohol use. To examine this possibility, we performed an epigenome-wide association study of methylation of cytosine-phosphate-guanine dinucleotide (CpG) sites in relation to alcohol intake in 13 population-based cohorts (ntotal=13 317; 54% women; mean age across cohorts 42-76 years) using whole blood (9643 European and 2423 African ancestries) or monocyte-derived DNA (588 European, 263 African and 400 Hispanic ancestry) samples. We performed meta-analysis and variable selection in whole-blood samples of people of European ancestry (n=6926) and identified 144 CpGs that provided substantial discrimination (area under the curve=0.90-0.99) for current heavy alcohol intake (⩾42 g per day in men and ⩾28 g per day in women) in four replication cohorts. The ancestry-stratified meta-analysis in whole blood identified 328 (9643 European ancestry samples) and 165 (2423 African ancestry samples) alcohol-related CpGs at Bonferroni-adjusted P<1 × 10(-7). Analysis of the monocyte-derived DNA (n=1251) identified 62 alcohol-related CpGs at P<1 × 10(-7). In whole-blood samples of people of European ancestry, we detected differential methylation in two neurotransmitter receptor genes, the γ-Aminobutyric acid-A receptor delta and γ-aminobutyric acid B receptor subunit 1; their differential methylation was associated with expression levels of a number of genes involved in immune function. In conclusion, we have identified a robust alcohol-related DNA methylation signature and shown the potential utility of DNA methylation as a clinically useful diagnostic test to detect current heavy alcohol consumption.
  •  
18.
  • Loth, Daan W, et al. (author)
  • Genome-wide association analysis identifies six new loci associated with forced vital capacity
  • 2014
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 46, s. 669-677
  • Journal article (peer-reviewed)abstract
    • Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10(-8)) with FVC in or near EFEMP1, BMP6, MIR129-2-HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease.
  •  
19.
  • Estrada, Karol, et al. (author)
  • Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.
  • 2012
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 44:5, s. 491-501
  • Journal article (peer-reviewed)abstract
    • Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10(-4), Bonferroni corrected), of which six reached P < 5 × 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
  •  
20.
  • Oei, L., et al. (author)
  • Genome-wide association study for radiographic vertebral fractures: A potential role for the 16q24 BMD locus
  • 2014
  • In: Bone. - : Elsevier BV. - 8756-3282 .- 1873-2763. ; 59, s. 20-27
  • Journal article (peer-reviewed)abstract
    • Vertebral fracture risk is a heritable complex trait. The aim of this study was to identify genetic susceptibility factors for osteoporotic vertebral fracture applying a genome-wide association study (GWAS) approach. The GWAS discovery was based on the Rotterdam Study, a population-based study of elderly Dutch individuals aged >55 years; and comprising 329 cases and 2666 controls with radiographic scoring (McCloskey-Kanis) and genetic data. Replication of one top-associated SNP was pursued by de-novo genotyping of 15 independent studies across Europe, the United States, and Australia and one Asian study. Radiographic vertebral fracture assessment was performed using McCloskey-Kanis or Genant semi-quantitative definitions. SNPs were analyzed in relation to vertebral fracture using logistic regression models corrected for age and sex. Fixed effects inverse variance and Han-Eskin alternative random effects meta-analyses were applied. Genome-wide significance was set at p<5 x 10(-8). In the discovery, a SNP (rs11645938) on chromosome 16q24 was associated with the risk for vertebral fractures at p = 4.6 x 10(-8). However, the association was not significant across 5720 cases and 21,791 controls from 14 studies. Fixed-effects meta-analysis summary estimate was 1.06 (95% Cl: 0.98-1.14; p = 0.17), displaying high degree of heterogeneity (I-2= 57%; Q(het)p = 0.0006). Under Han-Eskin alternative random effects model the summary effect was significant (p = 0.0005). The SNP maps to a region previously found associated with lumbar spine bone mineral density (LS-BMD) in two large meta-analyses from the GEFOS consortium. A false positive association in the GWAS discovery cannot be excluded, yet, the low-powered setting of the discovery and replication settings (appropriate to identify risk effect size >1.25) may still be consistent with an effect size <1.10, more of the type expected in complex traits. Larger effort in studies with standardized phenotype definitions is needed to confirm or reject the involvement of this locus on the risk for vertebral fractures. (C) 2013 Elsevier Inc. All rights reserved.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  • Zheng, Hou-Feng, et al. (author)
  • Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 526:7571, s. 112-
  • Journal article (peer-reviewed)abstract
    • The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF <= 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants(1-8), as well as rare, population specific, coding variants(9). Here we identify novel non-coding genetic variants with large effects on BMD (n(total) = 53,236) and fracture (n(total) = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD8 (rs11692564(T), MAF51.6%, replication effect size510.20 s.d., P-meta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1cre/flox mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size +10.41 s.d., P-meta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
  •  
25.
  •  
26.
  • Parmar, Priyanka, et al. (author)
  • Association of maternal prenatal smoking GFI1-locus and cardiometabolic phenotypes in 18,212 adults
  • 2018
  • In: EBioMedicine. - : Elsevier BV. - 2352-3964. ; 38, s. 206-216
  • Journal article (peer-reviewed)abstract
    • Background: DNA methylation at the GFI1-locus has been repeatedly associated with exposure to smoking from the foetal period onwards. We explored whether DNA methylation may be a mechanism that links exposure to maternal prenatal smoking with offspring's adult cardio-metabolic health. Methods: We meta-analysed the association between DNA methylation at GFI1-locus with maternal prenatal smoking, adult own smoking, and cardio-metabolic phenotypes in 22 population-based studies from Europe, Australia, and USA (n= 18,212). DNA methylation at the GFI1-locus was measured in whole-blood. Multivariable regression models were fitted to examine its association with exposure to prenatal and own adult smoking. DNA methylation levels were analysed in relation to body mass index (BMI), waist circumference (WC), fasting glucose (FG), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), diastolic, and systolic blood pressure (BP). Findings: Lower DNA methylation at three out of eight GFI1-CpGs was associated with exposure to maternal prenatal smoking, whereas, all eight CpGs were associated with adult own smoking. Lower DNA methylation at cg14179389, the strongest maternal prenatal smoking locus, was associated with increased WC and BP when adjusted for sex, age, and adult smoking with Bonferroni-corrected P < 0.012. In contrast, lower DNA methylation at cg09935388, the strongest adult own smoking locus, was associated with decreased BMI, WC, and BP (adjusted 1 x 10(-7) < P < 0.01). Similarly, lower DNA methylation at cg12876356, cg18316974, cg09662411, and cg18146737 was associated with decreased BMI and WC (5 x 10(-8) < P < 0.001). Lower DNA methylation at all the CpGs was consistently associated with higher TG levels. Interpretation: Epigenetic changes at the GFI1 were linked to smoking exposure in-utero/in-adulthood and robustly associated with cardio-metabolic risk factors. Fund: European Union's Horizon 2020 research and innovation programme under grant agreement no. 633595 DynaHEALTH.
  •  
27.
  • Clavel, J., et al. (author)
  • Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. I. An 8 month campaign of monitoring NGC 5548 with IUE
  • 1991
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 366:1, s. 64-8181
  • Journal article (peer-reviewed)abstract
    • The authors present emission-line and ultraviolet continuum observations of a type I Seyfert galaxy in which the time resolution is adequate for describing the character of variability. Using the IUE satellite, the nucleus of NGC 5548 was observed every 4 days for a period of 8 months. Its mean properties-continuum shape, line ratios-are not unusual for type I Seyfert galaxies, but it was found to be strongly variable. The ultraviolet continuum flux and broad emission line fluxes varied significantly, going through three large maxima and three deep minima. The great majority of all variations were well resolved in time. The data lend qualitative support to the view that photoionization by the nuclear continuum is responsible for driving the emission lines
  •  
28.
  • Kerkhof, H. J. M., et al. (author)
  • Recommendations for standardization and phenotype definitions in genetic studies of osteoarthritis: the TREAT-OA consortium
  • 2011
  • In: Osteoarthritis and Cartilage. - : Elsevier BV. - 1063-4584. ; 19:3, s. 254-264
  • Journal article (peer-reviewed)abstract
    • Objective: To address the need for standardization of osteoarthritis (OA) phenotypes by examining the effect of heterogeneity among symptomatic (SOA) and radiographic osteoarthritis (ROA) phenotypes. Methods: Descriptions of OA phenotypes of the 28 studies involved in the TREAT-OA consortium were collected. We investigated whether different OA definitions result in different association results by creating various hip OA definitions in one large population based cohort (the Rotterdam Study I (RSI)) and testing those for association with gender, age and body mass index using one-way ANOVA. For ROA, we standardized the hip-, knee- and hand ROA definitions and calculated prevalence's of ROA before and after standardization in nine cohort studies. This procedure could only be performed in cohort studies and standardization of SOA definitions was not feasible at this moment. Results: In this consortium, all studies with SOA phenotypes (knee, hip and hand) used a different definition and/or assessment of OA status. For knee-, hip- and hand ROA five, four and seven different definitions were used, respectively. Different hip ROA definitions do lead to different association results. For example, we showed in the RSI that hip OA defined as "at least definite joint space narrowing (JSN) and one definite osteophyte" was not associated with gender (P=0.22), but defined as "at least one definite osteophyte" was significantly associated with gender (P=3 x 10(-9)). Therefore, a standardization process was undertaken for ROA definitions. Before standardization a wide range of ROA prevalence's was observed in the nine cohorts studied. After standardization the range in prevalence of knee- and hip ROA was small. Conclusion: Phenotype definitions influence the prevalence of OA and association with clinical variables. ROA phenotypes within the TREAT-OA consortium were standardized to reduce heterogeneity and improve power in future genetics studies. (C) 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
  •  
29.
  • Oei, Ling, et al. (author)
  • A genome-wide copy number association study of osteoporotic fractures points to the 6p25.1 locus
  • 2014
  • In: Journal of Medical Genetics. - : BMJ Publishing Group. - 0022-2593 .- 1468-6244. ; 51:2, s. 122-131
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Osteoporosis is a systemic skeletal disease characterised by reduced bone mineral density and increased susceptibility to fracture; these traits are highly heritable. Both common and rare copy number variants (CNVs) potentially affect the function of genes and may influence disease risk.AIM: To identify CNVs associated with osteoporotic bone fracture risk.METHOD: We performed a genome-wide CNV association study in 5178 individuals from a prospective cohort in the Netherlands, including 809 osteoporotic fracture cases, and performed in silico lookups and de novo genotyping to replicate in several independent studies.RESULTS: A rare (population prevalence 0.14%, 95% CI 0.03% to 0.24%) 210 kb deletion located on chromosome 6p25.1 was associated with the risk of fracture (OR 32.58, 95% CI 3.95 to 1488.89; p=8.69×10(-5)). We performed an in silico meta-analysis in four studies with CNV microarray data and the association with fracture risk was replicated (OR 3.11, 95% CI 1.01 to 8.22; p=0.02). The prevalence of this deletion showed geographic diversity, being absent in additional samples from Australia, Canada, Poland, Iceland, Denmark, and Sweden, but present in the Netherlands (0.34%), Spain (0.33%), USA (0.23%), England (0.15%), Scotland (0.10%), and Ireland (0.06%), with insufficient evidence for association with fracture risk.CONCLUSIONS: These results suggest that deletions in the 6p25.1 locus may predispose to higher risk of fracture in a subset of populations of European origin; larger and geographically restricted studies will be needed to confirm this regional association. This is a first step towards the evaluation of the role of rare CNVs in osteoporosis.
  •  
30.
  • Tin, A, et al. (author)
  • Epigenome-wide association study of serum urate reveals insights into urate co-regulation and the SLC2A9 locus
  • 2021
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1, s. 7173-
  • Journal article (peer-reviewed)abstract
    • Elevated serum urate levels, a complex trait and major risk factor for incident gout, are correlated with cardiometabolic traits via incompletely understood mechanisms. DNA methylation in whole blood captures genetic and environmental influences and is assessed in transethnic meta-analysis of epigenome-wide association studies (EWAS) of serum urate (discovery, n = 12,474, replication, n = 5522). The 100 replicated, epigenome-wide significant (p < 1.1E–7) CpGs explain 11.6% of the serum urate variance. At SLC2A9, the serum urate locus with the largest effect in genome-wide association studies (GWAS), five CpGs are associated with SLC2A9 gene expression. Four CpGs at SLC2A9 have significant causal effects on serum urate levels and/or gout, and two of these partly mediate the effects of urate-associated GWAS variants. In other genes, including SLC7A11 and PHGDH, 17 urate-associated CpGs are associated with conditions defining metabolic syndrome, suggesting that these CpGs may represent a blood DNA methylation signature of cardiometabolic risk factors. This study demonstrates that EWAS can provide new insights into GWAS loci and the correlation of serum urate with other complex traits.
  •  
31.
  •  
32.
  • Wang, Thomas J, et al. (author)
  • Common genetic determinants of vitamin D insufficiency: a genome-wide association study.
  • 2010
  • In: Lancet. - 1474-547X. ; 376:9736, s. 180-8
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Vitamin D is crucial for maintenance of musculoskeletal health, and might also have a role in extraskeletal tissues. Determinants of circulating 25-hydroxyvitamin D concentrations include sun exposure and diet, but high heritability suggests that genetic factors could also play a part. We aimed to identify common genetic variants affecting vitamin D concentrations and risk of insufficiency. METHODS: We undertook a genome-wide association study of 25-hydroxyvitamin D concentrations in 33 996 individuals of European descent from 15 cohorts. Five epidemiological cohorts were designated as discovery cohorts (n=16 125), five as in-silico replication cohorts (n=9367), and five as de-novo replication cohorts (n=8504). 25-hydroxyvitamin D concentrations were measured by radioimmunoassay, chemiluminescent assay, ELISA, or mass spectrometry. Vitamin D insufficiency was defined as concentrations lower than 75 nmol/L or 50 nmol/L. We combined results of genome-wide analyses across cohorts using Z-score-weighted meta-analysis. Genotype scores were constructed for confirmed variants. FINDINGS: Variants at three loci reached genome-wide significance in discovery cohorts for association with 25-hydroxyvitamin D concentrations, and were confirmed in replication cohorts: 4p12 (overall p=1.9x10(-109) for rs2282679, in GC); 11q12 (p=2.1x10(-27) for rs12785878, near DHCR7); and 11p15 (p=3.3x10(-20) for rs10741657, near CYP2R1). Variants at an additional locus (20q13, CYP24A1) were genome-wide significant in the pooled sample (p=6.0x10(-10) for rs6013897). Participants with a genotype score (combining the three confirmed variants) in the highest quartile were at increased risk of having 25-hydroxyvitamin D concentrations lower than 75 nmol/L (OR 2.47, 95% CI 2.20-2.78, p=2.3x10(-48)) or lower than 50 nmol/L (1.92, 1.70-2.16, p=1.0x10(-26)) compared with those in the lowest quartile. INTERPRETATION: Variants near genes involved in cholesterol synthesis, hydroxylation, and vitamin D transport affect vitamin D status. Genetic variation at these loci identifies individuals who have substantially raised risk of vitamin D insufficiency. FUNDING: Full funding sources listed at end of paper (see Acknowledgments).
  •  
33.
  • Armbrecht, Gabriele, et al. (author)
  • Degenerative inter-vertebral disc disease osteochondrosis intervertebralis in Europe : Prevalence, geographic variation and radiological correlates in men and women aged 50 and over
  • 2017
  • In: Rheumatology. - : Oxford University Press (OUP). - 1462-0324 .- 1462-0332. ; 56:7, s. 1189-1199
  • Journal article (peer-reviewed)abstract
    • Objectives. To assess the prevalences across Europe of radiological indices of degenerative inter-vertebral disc disease (DDD); and to quantify their associations with, age, sex, physical anthropometry, areal BMD (aBMD) and change in aBMD with time. Methods. In the population-based European Prospective Osteoporosis Study, 27 age-stratified samples of men and women from across the continent aged 50+ years had standardized lateral radiographs of the lumbar and thoracic spine to evaluate the severity of DDD, using the Kellgren-Lawrence (KL) scale. Measurements of anterior, mid-body and posterior vertebral heights on all assessed vertebrae from T4 to L4 were used to generate indices of end-plate curvature. Results. Images from 10 132 participants (56% female, mean age 63.9 years) passed quality checks. Overall, 47% of men and women had DDD grade 3 or more in the lumbar spine and 36% in both thoracic and lumbar spine. Risk ratios for DDD grades 3 and 4, adjusted for age and anthropometric determinants, varied across a three-fold range between centres, yet prevalences were highly correlated in men and women. DDD was associated with flattened, non-ovoid inter-vertebral disc spaces. KL grade 4 and loss of inter-vertebral disc space were associated with higher spine aBMD. Conclusion. KL grades 3 and 4 are often used clinically to categorize radiological DDD. Highly variable European prevalences of radiologically defined DDD grades 3+ along with the large effects of age may have growing and geographically unequal health and economic impacts as the population ages. These data encourage further studies of potential genetic and environmental causes.
  •  
34.
  • Estrada, Karol, et al. (author)
  • A genome-wide association study of northwestern Europeans involves the C-type natriuretic peptide signaling pathway in the etiology of human height variation.
  • 2009
  • In: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 18:18, s. 3516-24
  • Journal article (peer-reviewed)abstract
    • Northwestern Europeans are among the tallest of human populations. The increase in body height in these people appears to have reached a plateau, suggesting the ubiquitous presence of an optimal environment in which genetic factors may have exerted a particularly strong influence on human growth. Therefore, we performed a genome-wide association study (GWAS) of body height using 2.2 million markers in 10 074 individuals from three Dutch and one German population-based cohorts. Upon genotyping, the 12 most significantly height-associated single nucleotide polymorphisms (SNPs) from this GWAS in 6912 additional individuals of Dutch and Swedish origin, a genetic variant (rs6717918) on chromosome 2q37.1 was found to be associated with height at a genome-wide significance level (P(combined) = 3.4 x 10(-9)). Notably, a second SNP (rs6718438) located approximately 450 bp away and in strong LD (r(2) = 0.77) with rs6717918 was previously found to be suggestive of a height association in 29 820 individuals of mainly northwestern European ancestry, and the over-expression of a nearby natriuretic peptide precursor type C (NPPC) gene, has been associated with overgrowth and skeletal anomalies. We also found a SNP (rs10472828) located on 5p14 near the natriuretic peptide receptor 3 (NPR3) gene, encoding a receptor of the NPPC ligand, to be associated with body height (P(combined) = 2.1 x 10(-7)). Taken together, these results suggest that variation in the C-type natriuretic peptide signaling pathway, involving the NPPC and NPR3 genes, plays an important role in determining human body height.
  •  
35.
  • Evangelou, Evangelos, et al. (author)
  • A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip
  • 2014
  • In: Annals of the Rheumatic Diseases. - : BMJ. - 1468-2060 .- 0003-4967. ; 73:12, s. 2130-2136
  • Journal article (peer-reviewed)abstract
    • Objectives Osteoarthritis (OA) is the most common form of arthritis with a clear genetic component. To identify novel loci associated with hip OA we performed a meta-analysis of genome-wide association studies (GWAS) on European subjects. Methods We performed a two-stage meta-analysis on more than 78 000 participants. In stage 1, we synthesised data from eight GWAS whereas data from 10 centres were used for 'in silico' or 'de novo' replication. Besides the main analysis, a stratified by sex analysis was performed to detect possible sex-specific signals. Meta-analysis was performed using inverse-variance fixed effects models. A random effects approach was also used. Results We accumulated 11 277 cases of radiographic and symptomatic hip OA. We prioritised eight single nucleotide polymorphism (SNPs) for follow-up in the discovery stage (4349 OA cases); five from the combined analysis, two male specific and one female specific. One locus, at 20q13, represented by rs6094710 (minor allele frequency (MAF) 4%) near the NCOA3 (nuclear receptor coactivator 3) gene, reached genome-wide significance level with p=7.9x10(-9) and OR=1.28 (95% CI 1.18 to 1.39) in the combined analysis of discovery (p= 5.6x10(-8)) and follow-up studies (p=7.3x10(-4)). We showed that this gene is expressed in articular cartilage and its expression was significantly reduced in OA-affected cartilage. Moreover, two loci remained suggestive associated; rs5009270 at 7q31 (MAF 30%, p=9.9x10(-7), OR=1.10) and rs3757837 at 7p13 (MAF 6%, p=2.2x10(-6), OR=1.27 in male specific analysis). Conclusions Novel genetic loci for hip OA were found in this meta-analysis of GWAS.
  •  
36.
  • Evangelou, Evangelos, et al. (author)
  • Meta-analysis of genome-wide association studies confirms a susceptibility locus for knee osteoarthritis on chromosome 7q22
  • 2011
  • In: Annals of the Rheumatic Diseases. - : BMJ. - 1468-2060 .- 0003-4967. ; 70:2, s. 349-355
  • Journal article (peer-reviewed)abstract
    • Objectives Osteoarthritis (OA) is the most prevalent form of arthritis and accounts for substantial morbidity and disability, particularly in older people. It is characterised by changes in joint structure, including degeneration of the articular cartilage, and its aetiology is multifactorial with a strong postulated genetic component. Methods A meta-analysis was performed of four genome-wide association (GWA) studies of 2371 cases of knee OA and 35 909 controls in Caucasian populations. Replication of the top hits was attempted with data from 10 additional replication datasets. Results With a cumulative sample size of 6709 cases and 44 439 controls, one genome-wide significant locus was identified on chromosome 7q22 for knee OA (rs4730250, p = 9.2 x 10(-9)), thereby confirming its role as a susceptibility locus for OA. Conclusion The associated signal is located within a large (500 kb) linkage disequilibrium block that contains six genes: PRKAR2B (protein kinase, cAMP-dependent, regulatory, type II, beta), HPB1 (HMG-box transcription factor 1), COG5 (component of oligomeric golgi complex 5), GPR22 (G protein-coupled receptor 22), DUS4L (dihydrouridine synthase 4-like) and BCAP29 (B cell receptor-associated protein 29). Gene expression analyses of the (six) genes in primary cells derived from different joint tissues confirmed expression of all the genes in the joint environment.
  •  
37.
  • Leyland, K. M., et al. (author)
  • Harmonising measures of knee and hip osteoarthritis in population-based cohort studies : an international study
  • 2018
  • In: Osteoarthritis and Cartilage. - : Elsevier BV. - 1063-4584. ; 26:7, s. 872-879
  • Journal article (peer-reviewed)abstract
    • Objective: Population-based osteoarthritis (OA) cohorts provide vital data on risk factors and outcomes of OA, however the methods to define OA vary between cohorts. We aimed to provide recommendations for combining knee and hip OA data in extant and future population cohort studies, in order to facilitate informative individual participant level analyses. Method: International OA experts met to make recommendations on: 1) defining OA by X-ray and/or pain; 2) compare The National Health and Nutrition Examination Survey (NHANES)-type OA pain questions; 3) the comparability of the Western Ontario & McMaster Universities Osteoarthritis Index (WOMAC) scale to NHANES-type OA pain questions; 4) the best radiographic scoring method; 5) the usefulness of other OA outcome measures. Key issues were explored using new analyses in two population-based OA cohorts (Multicenter Osteoarthritis Study; MOST and Osteoarthritis Initiative OAI). Results: OA should be defined by both symptoms and radiographs, with symptoms alone as a secondary definition. Kellgren and Lawrence (K/L) grade ≥2 should be used to define radiographic OA (ROA). The variable wording of pain questions can result in varying prevalence between 41.0% and 75.4%, however questions where the time anchor is similar have high sensitivity and specificity (91.2% and 89.9% respectively). A threshold of 3 on a 0–20 scale (95% CI 2.1, 3.9) in the WOMAC pain subscale demonstrated equivalence with the preferred NHANES-type question. Conclusion: This research provides recommendations, based on expert agreement, for harmonising and combining OA data in existing and future population-based cohorts.
  •  
38.
  • Schlosser, P, et al. (author)
  • Meta-analyses identify DNA methylation associated with kidney function and damage
  • 2021
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1, s. 7174-
  • Journal article (peer-reviewed)abstract
    • Chronic kidney disease is a major public health burden. Elevated urinary albumin-to-creatinine ratio is a measure of kidney damage, and used to diagnose and stage chronic kidney disease. To extend the knowledge on regulatory mechanisms related to kidney function and disease, we conducted a blood-based epigenome-wide association study for estimated glomerular filtration rate (n = 33,605) and urinary albumin-to-creatinine ratio (n = 15,068) and detected 69 and seven CpG sites where DNA methylation was associated with the respective trait. The majority of these findings showed directionally consistent associations with the respective clinical outcomes chronic kidney disease and moderately increased albuminuria. Associations of DNA methylation with kidney function, such as CpGs at JAZF1, PELI1 and CHD2 were validated in kidney tissue. Methylation at PHRF1, LDB2, CSRNP1 and IRF5 indicated causal effects on kidney function. Enrichment analyses revealed pathways related to hemostasis and blood cell migration for estimated glomerular filtration rate, and immune cell activation and response for urinary albumin-to-creatinineratio-associated CpGs.
  •  
39.
  • Smith, Gustav, et al. (author)
  • Discovery of Genetic Variation on Chromosome 5q22 Associated with Mortality in Heart Failure
  • 2016
  • In: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 12:5
  • Journal article (peer-reviewed)abstract
    • Failure of the human heart to maintain sufficient output of blood for the demands of the body, heart failure, is a common condition with high mortality even with modern therapeutic alternatives. To identify molecular determinants of mortality in patients with new-onset heart failure, we performed a meta-analysis of genome-wide association studies and follow-up genotyping in independent populations. We identified and replicated an association for a genetic variant on chromosome 5q22 with 36% increased risk of death in subjects with heart failure (rs9885413, P = 2.7x10-9). We provide evidence from reporter gene assays, computational predictions and epigenomic marks that this polymorphism increases activity of an enhancer region active in multiple human tissues. The polymorphism was further reproducibly associated with a DNA methylation signature in whole blood (P = 4.5x10-40) that also associated with allergic sensitization and expression in blood of the cytokine TSLP (P = 1.1x10-4). Knockdown of the transcription factor predicted to bind the enhancer region (NHLH1) in a human cell line (HEK293) expressing NHLH1 resulted in lower TSLP expression. In addition, we observed evidence of recent positive selection acting on the risk allele in populations of African descent. Our findings provide novel genetic leads to factors that influence mortality in patients with heart failure.
  •  
40.
  • Suri, P., et al. (author)
  • Genome-wide meta-analysis of 158,000 individuals of European ancestry identifies three loci associated with chronic back pain
  • 2018
  • In: PLoS Genet. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 14:9
  • Journal article (peer-reviewed)abstract
    • Back pain is the #1 cause of years lived with disability worldwide, yet surprisingly little is known regarding the biology underlying this symptom. We conducted a genome-wide association study (GWAS) meta-analysis of chronic back pain (CBP). Adults of European ancestry were included from 15 cohorts in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and from the UK Biobank interim data release. CBP cases were defined as those reporting back pain present for >= 3-6 months; non-cases were included as comparisons ("controls"). Each cohort conducted genotyping using commercially available arrays followed by imputation. GWAS used logistic regression models with additive genetic effects, adjusting for age, sex, study-specific covariates, and population substructure. The threshold for genome-wide significance in the fixed-effect inverse-variance weighted meta-analysis was p<5x10(-8). Suggestive (p<5x10(-7)) and genome-wide significant (p<5x10(-8)) variants were carried forward for replication or further investigation in the remaining UK Biobank participants not included in the discovery sample. The discovery sample comprised 158,025 individuals, including 29,531 CBP cases. A genome-wide significant association was found for the intronic variant rs12310519 in SOX5 (OR 1.08, p = 7.2x10(-10)). This was subsequently replicated in 283,752 UK Biobank participants not included in the discovery sample, including 50,915 cases (OR 1.06, p= 5.3x10(-11)), and exceeded genome-wide significance in joint meta-analysis (OR 1.07, p= 4.5x10(-19)). We found suggestive associations at three other loci in the discovery sample, two of which exceeded genome-wide significance in joint meta-analysis: an intergenic variant, rs7833174, located between CCDC26 and GSDMC (OR 1.05, p = 4.4x10(-13)), and an intronic variant, rs4384683, in DCC (OR 0.97, p = 2.4x10(-19)). In this first reported meta-analysis of GWAS for CBP, we identified and replicated a genetic locus associated with CBP (SOX5). We also identified 2 other loci that reached genome-wide significance in a 2-stage joint meta-analysis (CCDC26/GSDMC and DCC).
  •  
41.
  • Wahl, Simone, et al. (author)
  • Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity
  • 2017
  • In: Nature. - : NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 541:7635, s. 81-
  • Journal article (peer-reviewed)abstract
    • Approximately 1.5 billion people worldwide are overweight or affected by obesity, and are at risk of developing type (2) diabetes, cardiovascular disease and related metabolic and inflammatory disturbances(1,2). Although the mechanisms linking adiposity to associated clinical conditions are poorly understood, recent studies suggest that adiposity may influence DNA methylation(3-6), a key regulator of gene expression and molecular phenotype(7). Here we use epigenome-wide association to show that body mass index (BMI; a key measure of adiposity) is associated with widespread changes in DNA methylation (187 genetic loci with P < 1 x 10(-7), range P = 9.2 x 10(-8) to 6.0 x 10(-46); n = 10,261 samples). Genetic association analyses demonstrate that the alterations in DNA methylation are predominantly the consequence of adiposity, rather than the cause. We find that methylation loci are enriched for functional genomic features in multiple tissues (P < 0.05), and show that sentinel methylation markers identify gene expression signatures at 38 loci (P < 9.0 x 10(-6), range P = 5.5 x 10(-6) to 6.1 x 10(-35), n = 1,785 samples). The methylation loci identify genes involved in lipid and lipoprotein metabolism, substrate transport and inflammatory pathways. Finally, we show that the disturbances in DNA methylation predict future development of type 2 diabetes (relative risk per 1 standard deviation increase in methylation risk score: 2.3 (2.07-2.56); P = 1.1 x 10(-54)). Our results provide new insights into the biologic pathways influenced by adiposity, and may enable development of new strategies for prediction and prevention of type 2 diabetes and other adverse clinical consequences of obesity.
  •  
42.
  • Felix, Janine F, et al. (author)
  • Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index.
  • 2016
  • In: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 25:2, s. 389-403
  • Journal article (peer-reviewed)abstract
    • A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10(-8)) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10(-10)) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index.
  •  
43.
  • Hsu, Yi-Hsiang, et al. (author)
  • An Integration of Genome-Wide Association Study and Gene Expression Profiling to Prioritize the Discovery of Novel Susceptibility Loci for Osteoporosis-Related Traits
  • 2010
  • In: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 6:6, s. e1000977-
  • Journal article (peer-reviewed)abstract
    • Osteoporosis is a complex disorder and commonly leads to fractures in elderly persons. Genome-wide association studies (GWAS) have become an unbiased approach to identify variations in the genome that potentially affect health. However, the genetic variants identified so far only explain a small proportion of the heritability for complex traits. Due to the modest genetic effect size and inadequate power, true association signals may not be revealed based on a stringent genome-wide significance threshold. Here, we take advantage of SNP and transcript arrays and integrate GWAS and expression signature profiling relevant to the skeletal system in cellular and animal models to prioritize the discovery of novel candidate genes for osteoporosis-related traits, including bone mineral density (BMD) at the lumbar spine (LS) and femoral neck (FN), as well as geometric indices of the hip (femoral neck-shaft angle, NSA; femoral neck length, NL; and narrow-neck width, NW). A two-stage meta-analysis of GWAS from 7,633 Caucasian women and 3,657 men, revealed three novel loci associated with osteoporosis-related traits, including chromosome 1p13.2 (RAP1A, p = 3.6 x 10(-8)), 2q11.2 (TBC1D8), and 18q11.2 (OSBPL1A), and confirmed a previously reported region near TNFRSF11B/OPG gene. We also prioritized 16 suggestive genome-wide significant candidate genes based on their potential involvement in skeletal metabolism. Among them, 3 candidate genes were associated with BMD in women. Notably, 2 out of these 3 genes (GPR177, p = 2.6 x 10(-13); SOX6, p = 6.4 x 10(-10)) associated with BMD in women have been successfully replicated in a large-scale meta-analysis of BMD, but none of the non-prioritized candidates (associated with BMD) did. Our results support the concept of our prioritization strategy. In the absence of direct biological support for identified genes, we highlighted the efficiency of subsequent functional characterization using publicly available expression profiling relevant to the skeletal system in cellular or whole animal models to prioritize candidate genes for further functional validation.
  •  
44.
  •  
45.
  •  
46.
  • Uitterlinden, André G, et al. (author)
  • The association between common vitamin D receptor gene variations and osteoporosis : a participant-level meta-analysis
  • 2006
  • In: Annals of Internal Medicine. - 0003-4819. ; 145:4, s. 255-264
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Polymorphisms of the vitamin D receptor (VDR) gene have been implicated in the genetic regulation of bone mineral density (BMD). However, the clinical impact of these variants remains unclear.OBJECTIVE: To evaluate the relation between VDR polymorphisms, BMD, and fractures.DESIGN: Prospective multicenter large-scale association study.SETTING: The Genetic Markers for Osteoporosis consortium, involving 9 European research teams.PARTICIPANTS: 26,242 participants (18,405 women).MEASUREMENTS: Cdx2 promoter, FokI, BsmI, ApaI, and TaqI polymorphisms; BMD at the femoral neck and the lumbar spine by dual x-ray absorptiometry; and fractures.RESULTS: Comparisons of BMD at the lumbar spine and femoral neck showed nonsignificant differences less than 0.011 g/cm2 for any genotype with or without adjustments. A total of 6067 participants reported a history of fracture, and 2088 had vertebral fractures. For all VDR alleles, odds ratios for fractures were very close to 1.00 (range, 0.98 to 1.02) and collectively the 95% CIs ranged from 0.94 (lowest) to 1.07 (highest). For vertebral fractures, we observed a 9% (95% CI, 0% to 18%; P = 0.039) risk reduction for the Cdx2 A-allele (13% risk reduction in a dominant model).LIMITATIONS: The authors analyzed only selected VDR polymorphisms. Heterogeneity was detected in some analyses and may reflect some differences in collection of fracture data across cohorts. Not all fractures were related to osteoporosis.CONCLUSIONS: The FokI, BsmI, ApaI, and TaqI VDR polymorphisms are not associated with BMD or with fractures, but the Cdx2 polymorphism may be associated with risk for vertebral fractures.
  •  
47.
  •  
48.
  • Ma, Jiantao, et al. (author)
  • A Peripheral Blood DNA Methylation Signature of Hepatic Fat Reveals a Potential Causal Pathway for Nonalcoholic Fatty Liver Disease
  • 2019
  • In: Diabetes. - : AMER DIABETES ASSOC. - 0012-1797 .- 1939-327X. ; 68:5, s. 1073-1083
  • Journal article (peer-reviewed)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes (T2D). We aimed to identify the peripheral blood DNA methylation signature of hepatic fat. We conducted epigenome-wide association studies of hepatic fat in 3,400 European ancestry (EA) participants and in 401 Hispanic ancestry and 724 African ancestry participants from four population-based cohort studies. Hepatic fat was measured using computed tomography or ultrasound imaging and DNA methylation was assessed at >400,000 cytosine-guanine dinucleotides (CpGs) in whole blood or CD14+ monocytes using a commercial array. We identified 22 CpGs associated with hepatic fat in EA participants at a false discovery rate <0.05 (corresponding P = 6.9 x 10(-6)) with replication at Bonferroni-corrected P < 8.6 x 10(-4). Mendelian randomization analyses supported the association of hypomethylation of cg08309687 (LINC00649) with NAFLD (P = 2.5 x 10(-4)). Hypomethylation of the same CpG was also associated with risk for new-onset T2D (P = 0.005). Our study demonstrates that a peripheral blood-derived DNA methylation signature is robustly associated with hepatic fat accumulation. The hepatic fat-associated CpGs may represent attractive biomarkers for T2D. Future studies are warranted to explore mechanisms and to examine DNA methylation signatures of NAFLD across racial/ethnic groups.
  •  
49.
  •  
50.
  • Sikdar, S, et al. (author)
  • Comparison of smoking-related DNA methylation between newborns from prenatal exposure and adults from personal smoking
  • 2019
  • In: Epigenomics. - : Future Medicine Ltd. - 1750-192X .- 1750-1911. ; 11:13, s. 1487-1500
  • Journal article (peer-reviewed)abstract
    • Aim: Cigarette smoking influences DNA methylation genome wide, in newborns from pregnancy exposure and in adults from personal smoking. Whether a unique methylation signature exists for in utero exposure in newborns is unknown. Materials & methods: We separately meta-analyzed newborn blood DNA methylation (assessed using Illumina450k Beadchip), in relation to sustained maternal smoking during pregnancy (9 cohorts, 5648 newborns, 897 exposed) and adult blood methylation and personal smoking (16 cohorts, 15907 participants, 2433 current smokers). Results & conclusion: Comparing meta-analyses, we identified numerous signatures specific to newborns along with many shared between newborns and adults. Unique smoking-associated genes in newborns were enriched in xenobiotic metabolism pathways. Our findings may provide insights into specific health impacts of prenatal exposure on offspring.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 50
Type of publication
journal article (49)
conference paper (1)
Type of content
peer-reviewed (48)
other academic/artistic (2)
Author/Editor
Rivadeneira, Fernand ... (16)
Ohlsson, Claes, 1965 (13)
Psaty, BM (12)
Lehtimaki, T. (11)
Thorsteinsdottir, Un ... (11)
Stefansson, Kari (11)
show more...
Deloukas, Panos (10)
van Duijn, Cornelia ... (10)
Thorleifsson, Gudmar (10)
Boomsma, Dorret I. (10)
Milani, L (10)
Peters, A (9)
McCarthy, Mark I (9)
Gieger, Christian (9)
Spector, Timothy D (9)
Gieger, C (9)
Kahonen, M (9)
Zhao, W. (8)
Lind, Lars (8)
Soranzo, Nicole (8)
Fornage, M (8)
Wareham, Nicholas J. (8)
Kutalik, Z. (8)
Ridker, Paul M. (8)
Chasman, Daniel I. (8)
Jarvelin, Marjo-Riit ... (8)
Luan, Jian'an (8)
Wilson, James F. (8)
Raitakari, OT (8)
Kaprio, J (7)
Yang, J. (7)
Vandenput, Liesbeth, ... (7)
Scholz, M. (7)
Teumer, A (7)
Gudnason, V (7)
Uitterlinden, AG (7)
Ikram, MA (7)
Campbell, Harry (7)
Strachan, David P (7)
Snieder, H. (7)
Amin, Najaf (7)
Mellström, Dan, 1945 (7)
Mangino, Massimo (7)
Esko, T (7)
Ripatti, S (7)
Stefansson, K (7)
Metspalu, Andres (7)
Prokisch, H (7)
Franke, L (7)
Zillikens, M. Carola (7)
show less...
University
Karolinska Institutet (25)
Uppsala University (23)
Lund University (21)
University of Gothenburg (15)
Umeå University (6)
Stockholm School of Economics (2)
show more...
Högskolan Dalarna (2)
Luleå University of Technology (1)
show less...
Language
English (50)
Research subject (UKÄ/SCB)
Medical and Health Sciences (37)
Natural sciences (5)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view