SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(van Oosterwijk J.) "

Search: WFRF:(van Oosterwijk J.)

  • Result 1-33 of 33
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Lawrenson, Kate, et al. (author)
  • Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.
  •  
7.
  •  
8.
  • Hollestelle, Antoinette, et al. (author)
  • No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer
  • 2016
  • In: Gynecologic Oncology. - : Elsevier BV. - 0090-8258 .- 1095-6859. ; 141:2, s. 386-401
  • Journal article (peer-reviewed)abstract
    • Objective Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3′ UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370. Methods Centralized genotyping and analysis were performed for 140,012 women enrolled in the Ovarian Cancer Association Consortium (15,357 ovarian cancer patients; 30,816 controls), the Breast Cancer Association Consortium (33,530 breast cancer patients; 37,640 controls), and the Consortium of Modifiers of BRCA1 and BRCA2 (14,765 BRCA1 and 7904 BRCA2 mutation carriers). Results We found no association with risk of ovarian cancer (OR = 0.99, 95% CI 0.94-1.04, p = 0.74) or breast cancer (OR = 0.98, 95% CI 0.94-1.01, p = 0.19) and results were consistent among mutation carriers (BRCA1, ovarian cancer HR = 1.09, 95% CI 0.97-1.23, p = 0.14, breast cancer HR = 1.04, 95% CI 0.97-1.12, p = 0.27; BRCA2, ovarian cancer HR = 0.89, 95% CI 0.71-1.13, p = 0.34, breast cancer HR = 1.06, 95% CI 0.94-1.19, p = 0.35). Null results were also obtained for associations with overall survival following ovarian cancer (HR = 0.94, 95% CI 0.83-1.07, p = 0.38), breast cancer (HR = 0.96, 95% CI 0.87-1.06, p = 0.38), and all other previously-reported associations. Conclusions rs61764370 is not associated with risk of ovarian or breast cancer nor with clinical outcome for patients with these cancers. Therefore, genotyping this variant has no clinical utility related to the prediction or management of these cancers.
  •  
9.
  • Jakubowska, A, et al. (author)
  • Association of PHB 1630 C andgt; T and MTHFR 677 C andgt; T polymorphisms with breast and ovarian cancer risk in BRCA1/2 mutation carriers: results from a multicenter study
  • 2012
  • In: British Journal of Cancer. - : Cancer Research UK / Nature Publishing Group. - 0007-0920 .- 1532-1827. ; 106:12, s. 2016-2024
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: The variable penetrance of breast cancer in BRCA1/2 mutation carriers suggests that other genetic or environmental factors modify breast cancer risk. Two genes of special interest are prohibitin (PHB) and methylene-tetrahydrofolate reductase (MTHFR), both of which are important either directly or indirectly in maintaining genomic integrity. less thanbrgreater than less thanbrgreater thanMETHODS: To evaluate the potential role of genetic variants within PHB and MTHFR in breast and ovarian cancer risk, 4102 BRCA1 and 2093 BRCA2 mutation carriers, and 6211 BRCA1 and 2902 BRCA2 carriers from the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA) were genotyped for the PHB 1630 Candgt;T (rs6917) polymorphism and the MTHFR 677 Candgt;T (rs1801133) polymorphism, respectively. less thanbrgreater than less thanbrgreater thanRESULTS: There was no evidence of association between the PHB 1630 Candgt;T and MTHFR 677 Candgt;T polymorphisms with either disease for BRCA1 or BRCA2 mutation carriers when breast and ovarian cancer associations were evaluated separately. Analysis that evaluated associations for breast and ovarian cancer simultaneously showed some evidence that BRCA1 mutation carriers who had the rare homozygote genotype (TT) of the PHB 1630 Candgt;T polymorphism were at increased risk of both breast and ovarian cancer (HR 1.50, 95% CI 1.10-2.04 and HR 2.16, 95% CI 1.24-3.76, respectively). However, there was no evidence of association under a multiplicative model for the effect of each minor allele. less thanbrgreater than less thanbrgreater thanCONCLUSION: The PHB 1630TT genotype may modify breast and ovarian cancer risks in BRCA1 mutation carriers. This association need to be evaluated in larger series of BRCA1 mutation carriers.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  • Mavaddat, N, et al. (author)
  • Risk-reducing salpingo-oophorectomy, natural menopause, and breast cancer risk: an international prospective cohort of BRCA1 and BRCA2 mutation carriers
  • 2020
  • In: Breast cancer research : BCR. - : Springer Science and Business Media LLC. - 1465-542X. ; 22:1, s. 8-
  • Journal article (peer-reviewed)abstract
    • BackgroundThe effect of risk-reducing salpingo-oophorectomy (RRSO) on breast cancer risk forBRCA1andBRCA2mutation carriers is uncertain. Retrospective analyses have suggested a protective effect but may be substantially biased. Prospective studies have had limited power, particularly forBRCA2mutation carriers. Further, previous studies have not considered the effect of RRSO in the context of natural menopause.MethodsA multi-centre prospective cohort of 2272BRCA1and 1605BRCA2mutation carriers was followed for a mean of 5.4 and 4.9 years, respectively; 426 women developed incident breast cancer. RRSO was modelled as a time-dependent covariate in Cox regression, and its effect assessed in premenopausal and postmenopausal women.ResultsThere was no association between RRSO and breast cancer forBRCA1(HR = 1.23; 95% CI 0.94–1.61) orBRCA2(HR = 0.88; 95% CI 0.62–1.24) mutation carriers. ForBRCA2mutation carriers, HRs were 0.68 (95% CI 0.40–1.15) and 1.07 (95% CI 0.69–1.64) for RRSO carried out before or after age 45 years, respectively. The HR forBRCA2mutation carriers decreased with increasing time since RRSO (HR = 0.51; 95% CI 0.26–0.99 for 5 years or longer after RRSO). Estimates for premenopausal women were similar.ConclusionWe found no evidence that RRSO reduces breast cancer risk forBRCA1mutation carriers. A potentially beneficial effect forBRCA2mutation carriers was observed, particularly after 5 years following RRSO. These results may inform counselling and management of carriers with respect to RRSO.
  •  
21.
  • Hamdi, Yosr, et al. (author)
  • Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression : identification of a modifier of breast cancer risk at locus 11q22.3
  • 2017
  • In: Breast Cancer Research and Treatment. - : Springer Science and Business Media LLC. - 0167-6806 .- 1573-7217. ; 161:1, s. 117-134
  • Journal article (peer-reviewed)abstract
    • Purpose: Cis-acting regulatory SNPs resulting in differential allelic expression (DAE) may, in part, explain the underlying phenotypic variation associated with many complex diseases. To investigate whether common variants associated with DAE were involved in breast cancer susceptibility among BRCA1 and BRCA2 mutation carriers, a list of 175 genes was developed based of their involvement in cancer-related pathways. Methods: Using data from a genome-wide map of SNPs associated with allelic expression, we assessed the association of ~320 SNPs located in the vicinity of these genes with breast and ovarian cancer risks in 15,252 BRCA1 and 8211 BRCA2 mutation carriers ascertained from 54 studies participating in the Consortium of Investigators of Modifiers of BRCA1/2. Results: We identified a region on 11q22.3 that is significantly associated with breast cancer risk in BRCA1 mutation carriers (most significant SNP rs228595 p = 7 × 10−6). This association was absent in BRCA2 carriers (p = 0.57). The 11q22.3 region notably encompasses genes such as ACAT1, NPAT, and ATM. Expression quantitative trait loci associations were observed in both normal breast and tumors across this region, namely for ACAT1, ATM, and other genes. In silico analysis revealed some overlap between top risk-associated SNPs and relevant biological features in mammary cell data, which suggests potential functional significance. Conclusion: We identified 11q22.3 as a new modifier locus in BRCA1 carriers. Replication in larger studies using estrogen receptor (ER)-negative or triple-negative (i.e., ER-, progesterone receptor-, and HER2-negative) cases could therefore be helpful to confirm the association of this locus with breast cancer risk.
  •  
22.
  • Moghadasi, Setareh, et al. (author)
  • The BRCA1 c. 5096G > A p.Arg1699Gln (R1699Q) intermediate risk variant : breast and ovarian cancer risk estimation and recommendations for clinical management from the ENIGMA consortium
  • 2018
  • In: Journal of Medical Genetics. - : BMJ PUBLISHING GROUP. - 0022-2593 .- 1468-6244. ; 55:1, s. 15-20
  • Journal article (peer-reviewed)abstract
    • Background: We previously showed that the BRCA1 variant c. 5096G> A p.Arg1699Gln (R1699Q) was associated with an intermediate risk of breast cancer (BC) and ovarian cancer (OC). This study aimed to assess these cancer risks for R1699Q carriers in a larger cohort, including follow-up of previously studied families, to further define cancer risks and to propose adjusted clinical management of female BRCA1* R1699Q carriers.Methods: Data were collected from 129 BRCA1* R1699Q families ascertained internationally by ENIGMA (Evidence-based Network for the Interpretation of Germline Mutant Alleles) consortium members. A modified segregation analysis was used to calculate BC and OC risks. Relative risks were calculated under both monogenic model and major gene plus polygenic model assumptions.Results: In this cohort the cumulative risk of BC and OC by age 70 years was 20% and 6%, respectively. The relative risk for developing cancer was higher when using a model that included the effects of both the R1699Q variant and a residual polygenic component compared with monogenic model (for BC 3.67 vs 2.83, and for OC 6.41 vs 5.83).Conclusion: O ur results confirm that BRCA1* R1699Q confers an intermediate risk for BC and OC. Breast surveillance for female carriers based on mammogram annually from age 40 is advised. Bilateral salpingooophorectomy should be considered based on family history.
  •  
23.
  •  
24.
  • Pansuriya, Twinkal C., et al. (author)
  • Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome
  • 2011
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:12, s. 1256-1261
  • Journal article (peer-reviewed)abstract
    • Ollier disease and Maffucci syndrome are non-hereditary skeletal disorders characterized by multiple enchondromas (Ollier disease) combined with spindle cell hemangiomas (Maffucci syndrome). We report somatic heterozygous mutations in IDH1 (c.394C>T encoding an R132C substitution and c.395G>A encoding an R132H substitution) or IDH2 (c.516G>C encoding R172S) in 87% of enchondromas (benign cartilage tumors) and in 70% of spindle cell hemangiomas (benign vascular lesions). In total, 35 of 43 (81%) subjects with Ollier disease and 10 of 13 (77%) with Maffucci syndrome carried IDH1 (98%) or IDH2 (2%) mutations in their tumors. Fourteen of 16 subjects had identical mutations in separate lesions. Immunohistochemistry to detect mutant IDH1 R132H protein suggested intraneoplastic and somatic mosaicism. IDH1 mutations in cartilage tumors were associated with hypermethylation and downregulated expression of several genes. Mutations were also found in 40% of solitary central cartilaginous tumors and in four chondrosarcoma cell lines, which will enable functional studies to assess the role of IDH1 and IDH2 mutations in tumor formation.
  •  
25.
  • Ding, Yuan C, et al. (author)
  • A nonsynonymous polymorphism in IRS1 modifies risk of developing breast and ovarian cancers in BRCA1 and ovarian cancer in BRCA2 mutation carriers
  • 2012
  • In: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 21:8, s. 1362-1370
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: We previously reported significant associations between genetic variants in insulin receptor substrate 1 (IRS1) and breast cancer risk in women carrying BRCA1 mutations. The objectives of this study were to investigate whether the IRS1 variants modified ovarian cancer risk and were associated with breast cancer risk in a larger cohort of BRCA1 and BRCA2 mutation carriers.METHODS: IRS1 rs1801123, rs1330645, and rs1801278 were genotyped in samples from 36 centers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Data were analyzed by a retrospective cohort approach modeling the associations with breast and ovarian cancer risks simultaneously. Analyses were stratified by BRCA1 and BRCA2 status and mutation class in BRCA1 carriers.RESULTS: Rs1801278 (Gly972Arg) was associated with ovarian cancer risk for both BRCA1 (HR, 1.43; 95% confidence interval (CI), 1.06-1.92; P = 0.019) and BRCA2 mutation carriers (HR, 2.21; 95% CI, 1.39-3.52, P = 0.0008). For BRCA1 mutation carriers, the breast cancer risk was higher in carriers with class II mutations than class I mutations (class II HR, 1.86; 95% CI, 1.28-2.70; class I HR, 0.86; 95%CI, 0.69-1.09; P(difference), 0.0006). Rs13306465 was associated with ovarian cancer risk in BRCA1 class II mutation carriers (HR, 2.42; P = 0.03).CONCLUSION: The IRS1 Gly972Arg single-nucleotide polymorphism, which affects insulin-like growth factor and insulin signaling, modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers and breast cancer risk in BRCA1 class II mutation carriers.Impact: These findings may prove useful for risk prediction for breast and ovarian cancers in BRCA1 and BRCA2 mutation carriers.
  •  
26.
  • Purdue, Mark P, et al. (author)
  • Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3
  • 2011
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 43:1, s. 60-65
  • Journal article (peer-reviewed)abstract
    • We conducted a two-stage genome-wide association study of renal cell carcinoma (RCC) in 3,772 affected individuals (cases) and 8,505 controls of European background from 11 studies and followed up 6 SNPs in 3 replication studies of 2,198 cases and 4,918 controls. Two loci on the regions of 2p21 and 11q13.3 were associated with RCC susceptibility below genome-wide significance. Two correlated variants (r² = 0.99 in controls), rs11894252 (P = 1.8 × 10⁻⁸) and rs7579899 (P = 2.3 × 10⁻⁹), map to EPAS1 on 2p21, which encodes hypoxia-inducible-factor-2 alpha, a transcription factor previously implicated in RCC. The second locus, rs7105934, at 11q13.3, contains no characterized genes (P = 7.8 × 10⁻¹⁴). In addition, we observed a promising association on 12q24.31 for rs4765623, which maps to SCARB1, the scavenger receptor class B, member 1 gene (P = 2.6 × 10⁻⁸). Our study reports previously unidentified genomic regions associated with RCC risk that may lead to new etiological insights.
  •  
27.
  •  
28.
  • Hoogenkamp, Henk R., et al. (author)
  • Seamless Vascularized Large-Diameter Tubular Collagen Scaffolds Reinforced with Polymer Knittings for Esophageal Regenerative Medicine
  • 2014
  • In: Tissue Engineering. Part C, Methods. - : Mary Ann Liebert Inc. - 1937-3384 .- 1937-3392. ; 20:5, s. 423-430
  • Journal article (peer-reviewed)abstract
    • A clinical demand exists for alternatives to repair the esophagus in case of congenital defects, cancer, or trauma. A seamless biocompatible off-the-shelf large-diameter tubular scaffold, which is accessible for vascularization, could set the stage for regenerative medicine of the esophagus. The use of seamless scaffolds eliminates the error-prone tubularization step, which is necessary when emanating from flat scaffolds. In this study, we developed and characterized three different types of seamless tubular scaffolds, and evaluated in vivo tissue compatibility, including vascularization by omental wrapping. Scaffolds (luminal O approximate to 1.5cm) were constructed using freezing, lyophilizing, and cross-linking techniques and included (1) single-layered porous collagen scaffold, (2) dual-layered (porous+dense) collagen scaffold, and (3) hybrid scaffold (collagen+incorporated polycaprolacton knitting). The latter had an ultimate tensile strength comparable to a porcine esophagus. To induce rapid vascularization, scaffolds were implanted in the omentum of sheep using a wrapping technique. After 6 weeks of biocompatibility, vascularization, calcification, and hypoxia were evaluated using immunohistochemistry. Scaffolds were biocompatible, and cellular influx and ingrowth of blood vessels were observed throughout the whole scaffold. No calcification was observed, and slight hypoxic conditions were detected only in the direct vicinity of the polymer knitting. It is concluded that seamless large-diameter tubular collagen-based scaffolds can be constructed and vascularized in vivo. Such scaffolds provide novel tools for esophageal reconstruction.
  •  
29.
  • Noort, S., et al. (author)
  • Analysis of rare driving events in pediatric acute myeloid leukemia
  • 2023
  • In: Haematologica. - : Ferrata Storti Foundation (Haematologica). - 0390-6078 .- 1592-8721. ; 108:1, s. 48-60
  • Journal article (peer-reviewed)abstract
    • Elucidating genetic aberrations in pediatric acute myeloid leukemia (AML) provides insight in biology and may impact on risk-group stratification and clinical outcome. This study aimed to detect such aberrations in a selected series of samples without known (cyto)genetic aberration using molecular profiling. A cohort of 161 patients was selected from various study groups: DCOG, BFM, SJCRH, NOPHO and AEIOP. Samples were analyzed using RNA sequencing (n=152), whole exome (n=135) and/or whole genome sequencing (n=100). In 70 of 156 patients (45%), of whom RNA sequencing or whole genome sequencing was available, rearrangements were detected, 22 of which were novel; five involving ERG rearrangements and four NPM1 rearrangements. ERG rearrangements showed self-renewal capacity in vitro, and a distinct gene expression pattern. Gene set enrichment analysis of this cluster showed upregulation of gene sets derived from Ewing sarcoma, which was confirmed comparing gene expression profiles of AML and Ewing sarcoma. Furthermore, NPM1-rearranged cases showed cytoplasmic NPM1 localization and revealed HOXA/B gene overexpression, as described for NPM1 mutated cases. Single-gene mutations as identified in adult AML were rare. Patients had a median of 24 coding mutations (range, 7-159). Novel recurrent mutations were detected in UBTF (n=10), a regulator of RNA transcription. In 75% of patients an aberration with a prognostic impact could be detected. Therefore, we suggest these techniques need to become standard of care in diagnostics.
  •  
30.
  • Sun, Weilun, et al. (author)
  • Improving the Cell Distribution in Collagen-Coated Poly-Caprolactone Knittings
  • 2012
  • In: TISSUE ENG PART C-ME. - : Mary Ann Liebert Inc. - 1937-3384. ; 18:10, s. 731-739
  • Journal article (peer-reviewed)abstract
    • Adequate cellular in-growth into biomaterials is one of the fundamental requirements of scaffolds used in regenerative medicine. Type I collagen is the most commonly used material for soft tissue engineering, because it is nonimmunogenic and a highly porous network for cellular support can be produced. However, in general, adequate cell in-growth and cell seeding has been suboptimal. In this study we prepared collagen scaffolds of different collagen densities and investigated the cellular distribution. We also prepared a hybrid polymer-collagen scaffold to achieve an optimal cellular distribution as well as sufficient mechanical strength. Collagen scaffolds [ranging from 0.3% to 0.8% (w/v)] with and without a mechanically stable polymer knitting [polycaprolactone (PCL)] were prepared. The porous structure of collagen scaffolds was characterized using scanning electron microscopy and hematoxylin-eosin staining. The mechanical strength of hybrid scaffolds (collagen with or without PCL) was determined using tensile strength analysis. Cellular in-growth and interconnectivity were evaluated using fluorescent bead distribution and human bladder smooth muscle cells and human urothelium seeding. The lower density collagen scaffolds showed remarkably deeper cellular penetration and by combining it with PCL knitting the tensile strength was enhanced. This study indicated that a hybrid scaffold prepared from 0.4% collagen strengthened with knitting achieved the best cellular distribution.
  •  
31.
  • Sun, W., et al. (author)
  • The influence of collagen density in cellular distribution
  • 2012
  • In: Journal of Tissue Engineering and Regenerative Medicine. - : Hindawi Limited. - 1932-6254. ; 6:suppl 1, s. 166-166
  • Journal article (other academic/artistic)abstract
    • Adequate cellular in-growth into biomaterials is one of the fundamental requirements in regenerative medicine. Type-I-collagen is the most commonly used material for soft tissue engineering, because it is nonimmunogenic and a highly porous network for cellular support. However, adequate cell in-growth and cell seeding has been suboptimal. Different densities of collagen scaffolds (0.3% to 0.8% (w/v)) with/without polymer knitting (poly-caprolactone (PCL)) were prepared. The structure of collagen scaffolds was characterized using scanning electronic microscopy (SEM) and HE staining. The mechanical strength of hybrid scaffolds was determined using tensile strength analysis. Cellular penetration and interconnectivity were evaluated using fluorescent bead distribution and human bladder smooth muscle cells and urothelium seeding. SEM and HE analysis showed the honeycomb structure and the hybrid scaffolds were adequately connected. The hybrid scaffolds were much stronger than collagen alone. The distribution of the beads and cells were highly dependent on the collagen density: at lower densities the beads and cells were more evenly distributed and penetrated deeper into the scaffold. The lower density collagen scaffolds showed remarkably deeper cellular penetration and by combining it with PCL knitting the tensile strength was enhanced. This study indicated that a 0.4% hybrid scaffold strengthened with knitting achieved the best cellular distribution.
  •  
32.
  •  
33.
  • Yuan, Hongbo, et al. (author)
  • Synthetic fibrous hydrogels as a platform to decipher cell–matrix mechanical interactions
  • 2023
  • In: Proceedings of the National Academy of Sciences of the United States of America. - 0027-8424. ; 120:15
  • Journal article (peer-reviewed)abstract
    • Cells continuously sense external forces from their microenvironment, the extracellular matrix (ECM). In turn, they generate contractile forces, which stiffen and remodel this matrix. Although this bidirectional mechanical exchange is crucial for many cell functions, it remains poorly understood. Key challenges are that the majority of available matrices for such studies, either natural or synthetic, are difficult to control or lack biological relevance. Here, we use a synthetic, yet highly biomimetic hydrogel based on polyisocyanide (PIC) polymers to investigate the effects of the fibrous architecture and the nonlinear mechanics on cell–matrix interactions. Live-cell rheology was combined with advanced microscopy-based approaches to understand the mechanisms behind cell-induced matrix stiffening and plastic remodeling. We demonstrate how cell-mediated fiber remodeling and the propagation of fiber displacements are modulated by adjusting the biological and mechanical properties of this material. Moreover, we validate the biological relevance of our results by demonstrating that cellular tractions in PIC gels develop analogously to those in the natural ECM. This study highlights the potential of PIC gels to disentangle complex bidirectional cell–matrix interactions and to improve the design of materials for mechanobiology studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-33 of 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view