SwePub
Sök i SwePub databas

  Extended search

Boolean operators must be entered wtih CAPITAL LETTERS

Träfflista för sökning "hsv:(NATURAL SCIENCES) hsv:(Physical Sciences) hsv:(Astronomy Astrophysics and Cosmology) "

Search: hsv:(NATURAL SCIENCES) hsv:(Physical Sciences) hsv:(Astronomy Astrophysics and Cosmology)

  • Result 1-50 of 11372
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lestinsky, M., et al. (author)
  • Physics book: CRYRING@ESR
  • 2016
  • In: European Physical Journal: Special Topics. - : Springer Science and Business Media LLC. - 1951-6401 .- 1951-6355. ; 225:5, s. 797-882
  • Research review (peer-reviewed)abstract
    • The exploration of the unique properties of stored and cooled beams of highly-charged ions as provided by heavy-ion storage rings has opened novel and fascinating research opportunities in the realm of atomic and nuclear physics research. Since the late 1980s, pioneering work has been performed at the CRYRING at Stockholm (Abrahamsson et al. 1993) and at the Test Storage Ring (TSR) at Heidelberg (Baumann et al. 1988). For the heaviest ions in the highest charge-states, a real quantum jump was achieved in the early 1990s by the commissioning of the Experimental Storage Ring (ESR) at GSI Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt (Franzke 1987) where challenging experiments on the electron dynamics in the strong field regime as well as nuclear physics studies on exotic nuclei and at the borderline to atomic physics were performed. Meanwhile also at Lanzhou a heavy-ion storage ring has been taken in operation, exploiting the unique research opportunities in particular for medium-heavy ions and exotic nuclei (Xia et al. 2002).
  •  
2.
  • Aartsen, M. G., et al. (author)
  • Computational techniques for the analysis of small signals in high-statistics neutrino oscillation experiments
  • 2020
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 977
  • Journal article (peer-reviewed)abstract
    • The current and upcoming generation of Very Large Volume Neutrino Telescopes - collecting unprecedented quantities of neutrino events - can be used to explore subtle effects in oscillation physics, such as (but not restricted to) the neutrino mass ordering. The sensitivity of an experiment to these effects can be estimated from Monte Carlo simulations. With the high number of events that will be collected, there is a trade-off between the computational expense of running such simulations and the inherent statistical uncertainty in the determined values. In such a scenario, it becomes impractical to produce and use adequately-sized sets of simulated events with traditional methods, such as Monte Carlo weighting. In this work we present a staged approach to the generation of expected distributions of observables in order to overcome these challenges. By combining multiple integration and smoothing techniques which address limited statistics from simulation it arrives at reliable analysis results using modest computational resources.
  •  
3.
  • Baum, Sebastian, et al. (author)
  • Impact of a XENONnT signal on LHC dijet searches
  • 2019
  • In: Journal of High Energy Physics. - : Springer. - 1029-8479 .- 1126-6708. ; 2019:7
  • Journal article (peer-reviewed)abstract
    • It is well-known that dark matter (DM) direct detection experiments and the LHC are complementary, since they probe physical processes occurring at different energy scales. And yet, there are aspects of this complementarity which are still not fully understood, or exploited. For example, what is the impact that the discovery of DM at XENONnT would have on present and future searches for DM in LHC final states involving a pair of hadronic jets? In this work we investigate the impact of a XENONnT signal on the interpretation of current dijet searches at the LHC, and on the prospects for dijet signal discovery at the High-Luminosity (HL) LHC in the framework of simplified models. Specifically, we focus on a general class of simplified models where DM can have spin 0, 1/2 or 1, and interacts with quarks through the exchange of a scalar, pseudo-scalar, vector, or pseudo-vector mediator. We find that exclusion limits on the mediator’s mass and its coupling to quarks from dijet searches at the LHC are significantly affected by a signal at XENONnT, and that O(100) signal events at XENONnT would drastically narrow the region in the parameter space of simplified models where a dijet signal can be discovered at 5σ C.L. at the HL-LHC.
  •  
4.
  • Billnert, Robert, 1981, et al. (author)
  • Novel Scintillation Detectors for Prompt Fission γ-Ray Measurements
  • 2012
  • In: Physics Procedia. - : Elsevier BV. - 1875-3884 .- 1875-3892. ; 31, s. 29-34
  • Conference paper (peer-reviewed)abstract
    • In this work we present first results from measurements of prompt fission γ-rays from the spontaneous fission in 252Cf. New and accurate data on corresponding γ-rays from the reactions 235U(nth,f) and 239Pu(nth,f) are highly demanded for the modeling of new Generation-IV nuclear reactor systems. For these experiments we employed scintillation detectors made out of new materials (LaBr3, LaCl3 and CeBr3), whose properties were necessary to know in order to obtain reliable results. Hence, we have characterized these detectors. In all the important properties these detectors outshine sodium-iodine detectors that where used in the 1970s, when the existing data had been acquired. Our finding is that the new generation of scintillation detectors is indeed promising, as far as an improved precision of the demanded data is concerned.
  •  
5.
  • Emken, Timon, 1988 (author)
  • Solar reflection of light dark matter with heavy mediators
  • 2022
  • In: Physical Review D. - 2470-0010 .- 2470-0029. ; 105:6
  • Journal article (peer-reviewed)abstract
    • The direct detection of sub-GeV dark matter particles is hampered by their low energy deposits. If the maximum deposit allowed by kinematics falls below the energy threshold of a direct detection experiment, it is unable to detect these light particles. Mechanisms that boost particles from the Galactic halo can therefore extend the sensitivity of terrestrial direct dark matter searches to lower masses. Sub-GeV and sub-MeV dark matter particles can be efficiently accelerated by colliding with thermal nuclei and electrons of the solar plasma, respectively. This process is called "solar reflection."In this paper, we present a comprehensive study of solar reflection via electron and/or nuclear scatterings using Monte Carlo simulations of dark matter trajectories through the Sun. We study the properties of the boosted dark matter particles, obtain exclusion limits based on various experiments probing both electron and nuclear recoils, and derive projections for future detectors. In addition, we find and quantify a novel, distinct annual modulation signature of a potential solar reflection signal which critically depends on the anisotropies of the boosted dark matter flux ejected from the Sun. Along with this paper, we also publish the corresponding research software.
  •  
6.
  • Milstead, David A., et al. (author)
  • Study of the material of the ATLAS inner detector for Run 2 of the LHC
  • 2017
  • In: Journal of Instrumentation. - : Institute of Physics (IOP). - 1748-0221. ; 12:12
  • Journal article (peer-reviewed)abstract
    • The ATLAS inner detector comprises three different sub-detectors: the pixel detector, the silicon strip tracker, and the transition-radiation drift-tube tracker. The Insertable B-Layer, a new innermost pixel layer, was installed during the shutdown period in 2014, together with modifications to the layout of the cables and support structures of the existing pixel detector. The material in the inner detector is studied with several methods, using a low-luminosity s=13 TeV pp collision sample corresponding to around 2.0 nb-1 collected in 2015 with the ATLAS experiment at the LHC. In this paper, the material within the innermost barrel region is studied using reconstructed hadronic interaction and photon conversion vertices. For the forward rapidity region, the material is probed by a measurement of the efficiency with which single tracks reconstructed from pixel detector hits alone can be extended with hits on the track in the strip layers. The results of these studies have been taken into account in an improved description of the material in the ATLAS inner detector simulation, resulting in a reduction in the uncertainties associated with the charged-particle reconstruction efficiency determined from simulation. © 2017 CERN.
  •  
7.
  • Aad, G., et al. (author)
  • 2015
  • Journal article (peer-reviewed)
  •  
8.
  • Hooton, M.J., et al. (author)
  • Spi-OPS: Spitzer and CHEOPS confirm the near-polar orbit of MASCARA-1 b and reveal a hint of dayside reflection
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Journal article (peer-reviewed)abstract
    • Context. The light curves of tidally locked hot Jupiters transiting fast-rotating, early-type stars are a rich source of information about both the planet and star, with full-phase coverage enabling a detailed atmospheric characterisation of the planet. Although it is possible to determine the true spin-orbit angle ψ-a notoriously difficult parameter to measure-from any transit asymmetry resulting from gravity darkening induced by the stellar rotation, the correlations that exist between the transit parameters have led to large disagreements in published values of ψ for some systems. Aims. We aimed to study these phenomena in the light curves of the ultra-hot Jupiter MASCARA-1 b, which is characteristically similar to well-studied contemporaries such as KELT-9 b and WASP-33 b. Methods. We obtained optical CHaracterising ExOPlanet Satellite (CHEOPS) transit and occultation light curves of MASCARA-1 b, and analysed them jointly with a Spitzer/IRAC 4.5 μm full-phase curve to model the asymmetric transits, occultations, and phase-dependent flux modulation. For the latter, we employed a novel physics-driven approach to jointly fit the phase modulation by generating a single 2D temperature map and integrating it over the two bandpasses as a function of phase to account for the differing planet-star flux contrasts. The reflected light component was modelled using the general ab initio solution for a semi-infinite atmosphere. Results. When fitting the CHEOPS and Spitzer transits together, the degeneracies are greatly diminished and return results consistent with previously published Doppler tomography. Placing priors informed by the tomography achieves even better precision, allowing a determination of ψ = 72.1-2.4+2.5 deg. From the occultations and phase variations, we derived dayside and nightside temperatures of 3062-68+66 K and 1720 ± 330 K, respectively.Our retrieval suggests that the dayside emission spectrum closely follows that of a blackbody. As the CHEOPS occultation is too deep to be attributed to blackbody flux alone, we could separately derive geometric albedo Ag = 0.171-0.068+0.066 and spherical albedo As = 0.266-0.100+0.097 from the CHEOPS data, and Bond albedoAB = 0.057-0.101+0.083 from the Spitzer phase curve.Although small, the Ag and As indicate that MASCARA-1 b is more reflective than most other ultra-hot Jupiters, where H- absorption is expected to dominate. Conclusions. Where possible, priors informed by Doppler tomography should be used when fitting transits of fast-rotating stars, though multi-colour photometry may also unlock an accurate measurement of ψ. Our approach to modelling the phase variations at different wavelengths provides a template for how to separate thermal emission from reflected light in spectrally resolved James Webb Space Telescope phase curve data.
  •  
9.
  • Szabó, G.M., et al. (author)
  • The changing face of AU Mic b: Stellar spots, spin-orbit commensurability, and transit timing variations as seen by CHEOPS and TESS
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 654
  • Journal article (peer-reviewed)abstract
    • AU Mic is a young planetary system with a resolved debris disc showing signs of planet formation and two transiting warm Neptunes near mean-motion resonances. Here we analyse three transits of AU Mic b observed with the CHaracterising ExOPlanet Satellite (CHEOPS), supplemented with sector 1 and 27 Transiting Exoplanet Survey Satellite (TESS) photometry, and the All-Sky Automated Survey from the ground. The refined orbital period of AU Mic b is 8.462995 ± 0.000003 d, whereas the stellar rotational period is Prot = 4.8367 ± 0.0006 d. The two periods indicate a 7:4 spin-orbit commensurability at a precision of 0.1%. Therefore, all transits are observed in front of one of the four possible stellar central longitudes. This is strongly supported by the observation that the same complex star-spot pattern is seen in the second and third CHEOPS visits that were separated by four orbits (and seven stellar rotations). Using a bootstrap analysis we find that flares and star spots reduce the accuracy of transit parameters by up to 10% in the planet-to-star radius ratio and the accuracy on transit time by 3-4 min. Nevertheless, occulted stellar spot features independently confirm the presence of transit timing variations (TTVs) with an amplitude of at least 4 min. We find that the outer companion, AU Mic c, may cause the observed TTVs.
  •  
10.
  • Bergstrom, S., et al. (author)
  • J-factors for self-interacting dark matter in 20 dwarf spheroidal galaxies
  • 2018
  • In: Physical Review D. - 2470-0010 .- 2470-0029. ; 98:4
  • Journal article (peer-reviewed)abstract
    • Dwarf spheroidal galaxies are among the most promising targets for indirect dark matter (DM) searches in gamma rays. The gamma-ray flux from DM annihilation in a dwarf spheroidal galaxy is proportional to the J-factor of the source. The J-factor of a dwarf spheroidal galaxy is the line-of-sight integral of the DM mass density squared times /(0), where sigma(ann)v(rel) is the DM annihilation cross-section times relative velocity v(rel) = vertical bar v(rel)vertical bar angle brackets denote average over v(rel), and (sigma(ann)v(rel)) is the v(rel)-independent part of sigma(ann)v(rel). If sigma(ann)v(rel) is constant in v(rel), J-factors only depend on the DM space distribution in the source. However, if sigma(ann)v(rel) varies with v(rel), as in the presence of DM self-interactions, J-factors also depend on the DM velocity distribution, and on the strength and range of the DM self-interaction. Models for self interacting DM are increasingly important in the study of the small scale clustering of DM, and are compatible with current astronomical and cosmological observations. Here we derive the J-factor of 20 dwarf spheroidal galaxies from stellar kinematic data under the assumption of Yukawa DM self-interactions. J-factors are derived through a profile likelihood approach, assuming either NavarroFrenk-White (NEW) or cored DM profiles. We also compare our results with J-factors derived assuming the same velocity for all DM particles in the target galaxy. We find that this common approximation overestimates the Mactors by up to 1 order of magnitude. J-factors for a sample of DM particle masses and self-interaction coupling constants, as well as for NFW and cored density profiles, are provided electronically, ready to he used in other projects.
  •  
11.
  • Di Vecchia, Paolo, et al. (author)
  • Radiation reaction from soft theorems
  • 2021
  • In: Physics Letters B. - : Elsevier BV. - 0370-2693 .- 1873-2445. ; 818
  • Journal article (peer-reviewed)abstract
    • Radiation reaction (RR) terms at the third post-Minkowskian (3PM) order have recently been found to be instrumental in restoring smooth continuity between the non-relativistic, relativistic, and ultra-relativistic (including the massless) regimes. Here we propose a new and intriguing connection between RR and soft (bremsstrahlung) theorems which short-circuits the more involved conventional loop computations. Although first noticed in the context of the maximally supersymmetric theory, unitarity and analyticity arguments support the general validity of this 3PM-order connection that we apply, in particular, to Einstein's gravity and to its Jordan-Brans-Dicke extension. In the former case we find full agreement with a recent result by Damour obtained through a very different reasoning.
  •  
12.
  • Hartman, Henrik, et al. (author)
  • The FERRUM project : experimental and theoretical transition rates of forbidden [Sc II] lines and radiative lifetimes of metastable ScII levels
  • 2008
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 480:2, s. 575-580
  • Journal article (peer-reviewed)abstract
    • Context. In many plasmas, long-lived metastable atomic levels are depopulated by collisions (quenched) before they decay radiatively. In low-density regions, however, the low collision rate may allow depopulation by electric dipole (E1) forbidden radiative transitions, so-called forbidden lines (mainly M1 and E2 transitions). If the atomic transition data are known, these lines are indicators of physical plasma conditions and used for abundance determination. Aims. Transition rates can be derived by combining relative intensities between the decay channels, so-called branching fractions (BFs), and the radiative lifetime of the common upper level. We use this approach for forbidden [Sc II] lines, along with new calculations. Methods. Neither BFs for forbidden lines, nor lifetimes of metastable levels, are easily measured in a laboratory. Therefore, astrophysical BFs measured in Space Telescope Imaging Spectrograph (STIS) spectra of the strontium filament of Eta Carinae are combined with lifetime measurements using a laser probing technique on a stored ion-beam (CRYRING facility, MSL, Stockholm). These quantities are used to derive the absolute transition rates (A-values). New theoretical transition rates and lifetimes are calulated using the CIV3 code. Results. We report experimental lifetimes of the Sc II levels 3d(2) a(3)P(0,1,2) with lifetimes 1.28, 1.42, and 1.24 s, respectively, and transition rates for lines from these levels down to 3d4s a(3)D in the region 8270-8390 angstrom. These are the most important forbidden [Sc II] transitions. New calculations for lines and metastable lifetimes are also presented, and are in good agreement with the experimental data.
  •  
13.
  • Pusztai, Istvan, 1983, et al. (author)
  • Dynamo in Weakly Collisional Nonmagnetized Plasmas Impeded by Landau Damping of Magnetic Fields
  • 2020
  • In: Physical Review Letters. - : American Physical Society. - 1079-7114 .- 0031-9007. ; 124:25
  • Journal article (peer-reviewed)abstract
    • We perform fully kinetic simulations of flows known to produce dynamo in magnetohydrodynamics (MHD), considering scenarios with low Reynolds number and high magnetic Prandtl number, relevant for galaxy cluster scale fluctuation dynamos. We find that Landau damping on the electrons leads to a rapid decay of magnetic perturbations, impeding the dynamo. This collisionless damping process operates on spatial scales where electrons are nonmagnetized, reducing the range of scales where the magnetic field grows in high magnetic Prandtl number fluctuation dynamos. When electrons are not magnetized down to the resistive scale, the magnetic energy spectrum is expected to be limited by the scale corresponding to magnetic Landau damping or, if smaller, the electron gyroradius scale, instead of the resistive scale. In simulations we thus observe decaying magnetic fields where resistive MHD would predict a dynamo.
  •  
14.
  • Lendl, M., et al. (author)
  • The hot dayside and asymmetric transit of WASP-189 b seen by CHEOPS
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 643
  • Journal article (peer-reviewed)abstract
    • The CHEOPS space mission dedicated to exoplanet follow-up was launched in December 2019, equipped with the capacity to perform photometric measurements at the 20 ppm level. As CHEOPS carries out its observations in a broad optical passband, it can provide insights into the reflected light from exoplanets and constrain the short-wavelength thermal emission for the hottest of planets by observing occultations and phase curves. Here, we report the first CHEOPS observation of an occultation, namely, that of the hot Jupiter WASP-189 b, a MP ≈ 2MJ planet orbiting an A-type star. We detected the occultation of WASP-189 b at high significance in individual measurements and derived an occultation depth of dF = 87.9 ± 4.3 ppm based on four occultations. We compared these measurements to model predictions and we find that they are consistent with an unreflective atmosphere heated to a temperature of 3435 ± 27 K, when assuming inefficient heat redistribution. Furthermore, we present two transits of WASP-189 b observed by CHEOPS. These transits have an asymmetric shape that we attribute to gravity darkening of the host star caused by its high rotation rate. We used these measurements to refine the planetary parameters, finding a ~25% deeper transit compared to the discovery paper and updating the radius of WASP-189 b to 1.619 ± 0.021RJ. We further measured the projected orbital obliquity to be λ = 86.4-4.4+2.9°, a value that is in good agreement with a previous measurement from spectroscopic observations, and derived a true obliquity of ψ = 85.4 ± 4.3°. Finally, we provide reference values for the photometric precision attained by the CHEOPS satellite: for the V = 6.6 mag star, and using a 1-h binning, we obtain a residual RMS between 10 and 17 ppm on the individual light curves, and 5.7 ppm when combining the four visits.
  •  
15.
  • Morris, B. M., et al. (author)
  • CHEOPS precision phase curve of the Super-Earth 55 Cancri e
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Journal article (peer-reviewed)abstract
    • Context. 55 Cnc e is a transiting super-Earth (radius 1.88 R-circle plus and mass 8 M-circle plus) orbiting a G8V host star on a 17-h orbit. Spitzer observations of the planet's phase curve at 4.5 mu m revealed a time-varying occultation depth, and MOST optical observations are consistent with a time-varying phase curve amplitude and phase offset of maximum light. Both broadband and high-resolution spectroscopic analyses are consistent with either a high mean molecular weight atmosphere or no atmosphere for planet e. A long-term photometric monitoring campaign on an independent optical telescope is needed to probe the variability in this system. Aims. We seek to measure the phase variations of 55 Cnc e with a broadband optical filter with the 30 cm effective aperture space telescope CHEOPS and explore how the precision photometry narrows down the range of possible scenarios. Methods. We observed 55 Cnc for 1.6 orbital phases in March of 2020. We designed a phase curve detrending toolkit for CHEOPS photometry which allowed us to study the underlying flux variations in the 55 Cnc system. Results. We detected a phase variation with a full-amplitude of 72 +/- 7 ppm, but did not detect a significant secondary eclipse of the planet. The shape of the phase variation resembles that of a piecewise-Lambertian; however, the non-detection of the planetary secondary eclipse, and the large amplitude of the variations exclude reflection from the planetary surface as a possible origin of the observed phase variations. They are also likely incompatible with magnetospheric interactions between the star and planet, but may imply that circumplanetary or circumstellar material modulate the flux of the system. Conclusions. This year, further precision photometry of 55 Cnc from CHEOPS will measure variations in the phase curve amplitude and shape over time.
  •  
16.
  • Yuan, Ya Hua, et al. (author)
  • Angle-resolved photoemission spectroscopy view on the nature of Ce 4f electrons in the antiferromagnetic Kondo lattice CePd5Al2
  • 2021
  • In: Physical Review B. - : American Physical Society (APS). - 2469-9969 .- 2469-9950. ; 103:12
  • Journal article (peer-reviewed)abstract
    • We report an angle-resolved photoemission spectroscopy study of the antiferromagnetic Kondo lattice CePd5Al2, focusing on the quasi-two-dimensional k-space nature of its Fermi surface and, tuning photon energy to the Ce 4d-4f on-resonance transition, the hybridization of the Ce 4f state. A strong shoulder feature on the f0 peak was detected, suggesting hybridization between conduction and f bands. On-resonance spectra revealed narrow, yet hybridized quasiparticle bands with sharp peaks and ∼ 9 meV energy dispersion near the Fermi energy EF. The observed dispersive hybridized f band can be well described by a hybridization-band picture based on the periodic Anderson model (PAM). Hence, the 4f electrons in CePd5Al2 display a dual nature, with both localized and itinerant features, but with dominantly localized character.
  •  
17.
  • Eklund, Gustav, et al. (author)
  • Final-state-resolved mutual neutralization of Na+ and D-
  • 2021
  • In: Physical Review A: covering atomic, molecular, and optical physics and quantum information. - : American Physical Society. - 2469-9926 .- 2469-9934. ; 103:3
  • Journal article (peer-reviewed)abstract
    • The present paper reports on a merged-beam experiment on mutual neutralization between Na+ and D-. For this experiment, we have used the DESIREE ion-beams storage-ring facility. The reaction products are detected using a position- and time-sensitive detector, which ideally allows for determination of the population of each individual quantum state in the final atomic systems. Here, the 4s, 3d, and 4p final states in Na are observed and in all cases the D atom is in its ground state 1s S-2. The respective branching fractions of the states populated in Na are determined by fitting results from a Monte Carlo simulation of the experiment to the measured data. The center-of-mass collision energy is controlled using a set of biased drift tubes, and the branching fractions are measured for energies between 80 meV and 393 meV. The resulting branching fractions are found to agree qualitatively with the only available theoretical calculations for this particular system, which are based on a multichannel Landau-Zener approach using dynamic couplings determined with a linear combination of atomic orbitals model.
  •  
18.
  • Hartman, Henrik, et al. (author)
  • First storage of ion beams in the Double Electrostatic Ion-Ring Experiment : DESIREE
  • 2013
  • In: Review of Scientific Instruments. - : American Institute of Physics (AIP). - 0034-6748 .- 1089-7623. ; 84:5
  • Journal article (peer-reviewed)abstract
    • We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (Cn-, n = 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K. For 10 keV C2- molecular anions we measure the residual-gas limited beam storage lifetime to be 448 s +/- 18 s with two independent detector systems. Using the measured storage lifetimes we estimate that the residual gas pressure is in the 10-14 mbar range. When high current ion beams are injected, the number of stored particles does not follow a single exponential decay law as would be expected for stored particles lost solely due to electron detachment in collision with the residual-gas. Instead, we observe a faster initial decay rate, which we ascribe to the effect of the space charge of the ion beam on the storage capacity.
  •  
19.
  • Catena, Riccardo, 1978, et al. (author)
  • Dark matter-electron interactions in materials beyond the dark photon model
  • 2023
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; 2023:3
  • Journal article (peer-reviewed)abstract
    • The search for sub-GeV dark matter (DM) particles via electronic transitions in underground detectors attracted much theoretical and experimental interest in the past few years. A still open question in this field is whether experimental results can in general be interpreted in a framework where the response of detector materials to an external DM probe is described by a single ionisation or crystal form factor, as expected for the so-called dark photon model. Here, ionisation and crystal form factors are examples of material response functions: interaction-specific integrals of the initial and final state electron wave functions. In this work, we address this question through a systematic classification of the material response functions induced by a wide range of models for spin-0, spin-1/2 and spin-1 DM. We find several examples for which an accurate description of the electronic transition rate at DM direct detection experiments requires material response functions that go beyond those expected for the dark photon model. This concretely illustrates the limitations of a framework that is entirely based on the standard ionisation and crystal form factors, and points towards the need for the general response-function-based formalism we pushed forward recently [1,2]. For the models that require non-standard atomic and crystal response functions, we use the response functions of [1,2] to calculate the DM-induced electronic transition rate in atomic and crystal detectors, and to present 90% confidence level exclusion limits on the strength of the DM-electron interaction from the null results reported by XENON10, XENON1T, EDELWEISS and SENSEI.
  •  
20.
  • Aalbers, J., et al. (author)
  • A next-generation liquid xenon observatory for dark matter and neutrino physics
  • 2023
  • In: Journal of Physics G: Nuclear and Particle Physics. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 50:1
  • Research review (peer-reviewed)abstract
    • The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  • Aartsen, M. G., et al. (author)
  • A Search for Neutrino Emission from Fast Radio Bursts with Six Years of IceCube Data
  • 2018
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 857:2
  • Journal article (peer-reviewed)abstract
    • We present a search for coincidence between IceCube TeV neutrinos and fast radio bursts (FRBs). During the search period from 2010 May 31 to 2016 May 12, a total of 29 FRBs with 13 unique locations have been detected in the whole sky. An unbinned maximum likelihood method was used to search for spatial and temporal coincidence between neutrinos and FRBs in expanding time windows, in both the northern and southern hemispheres. No significant correlation was found in six years of IceCube data. Therefore, we set upper limits on neutrino fluence emitted by FRBs as a function of time window duration. We set the most stringent limit obtained to date on neutrino fluence from FRBs with an E-2 energy spectrum assumed, which is 0.0021 GeV cm(-2) per burst for emission timescales up to similar to 10(2) s from the northern hemisphere stacking search.
  •  
27.
  • Aartsen, M. G., et al. (author)
  • A Search for Neutrino Point-source Populations in 7 yr of IceCube Data with Neutrino-count Statistics
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 893:2
  • Journal article (peer-reviewed)abstract
    • The presence of a population of point sources in a data set modifies the underlying neutrino-count statistics from the Poisson distribution. This deviation can be exactly quantified using the non-Poissonian template fitting technique, and in this work we present the first application of this approach to the IceCube high-energy neutrino data set. Using this method, we search in 7 yr of IceCube data for point-source populations correlated with the disk of the Milky Way, the Fermi bubbles, the Schlegel, Finkbeiner, and Davis dust map, or with the isotropic extragalactic sky. No evidence for such a population is found in the data using this technique, and in the absence of a signal, we establish constraints on population models with source-count distribution functions that can be described by a power law with a single break. The derived limits can be interpreted in the context of many possible source classes. In order to enhance the flexibility of the results, we publish the full posterior from our analysis, which can be used to establish limits on specific population models that would contribute to the observed IceCube neutrino flux.
  •  
28.
  • Aartsen, M. G., et al. (author)
  • An All-Sky Search For Three Flavors Of Neutrinos From Gamma-Ray Bursts With The Icecube Neutrino Observatory
  • 2016
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 824:2
  • Journal article (peer-reviewed)abstract
    • We present the results and methodology of a search for neutrinos produced in the decay of charged pions created in interactions between protons and gamma-rays during the prompt emission of 807 gamma-ray bursts (GRBs) over the entire sky. This three-year search is the first in IceCube for shower-like Cherenkov light patterns from electron, muon, and tau neutrinos correlated with GRBs. We detect five low-significance events correlated with five GRBs. These events are consistent with the background expectation from atmospheric muons and neutrinos. The results of this search in combination with those of IceCube's four years of searches for track-like Cherenkov light patterns from muon neutrinos correlated with Northern-Hemisphere GRBs produce limits that tightly constrain current models of neutrino and ultra high energy cosmic ray production in GRB fireballs.
  •  
29.
  • Aartsen, M. G., et al. (author)
  • Astrophysical neutrinos and cosmic rays observed by IceCube
  • 2018
  • In: Advances in Space Research. - : Elsevier BV. - 0273-1177 .- 1879-1948. ; 62:10, s. 2902-2930
  • Journal article (peer-reviewed)abstract
    • The core mission of the IceCube neutrino observatory is to study the origin and propagation of cosmic rays. IceCube, with its surface component IceTop, observes multiple signatures to accomplish this mission. Most important are the astrophysical neutrinos that are produced in interactions of cosmic rays, close to their sources and in interstellar space. IceCube is the first instrument that measures the properties of this astrophysical neutrino flux and constrains its origin. In addition, the spectrum, composition, and anisotropy of the local cosmic-ray flux are obtained from measurements of atmospheric muons and showers. Here we provide an overview of recent findings from the analysis of IceCube data, and their implications to our understanding of cosmic rays.
  •  
30.
  • Aartsen, M. G., et al. (author)
  • Characteristics of the Diffuse Astrophysical Electron and Tau Neutrino Flux with Six Years of IceCube High Energy Cascade Data
  • 2020
  • In: Physical Review Letters. - : American Physical Society (APS). - 0031-9007 .- 1079-7114. ; 125:12
  • Journal article (peer-reviewed)abstract
    • We report on the first measurement of the astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010-2015. Assuming standard oscillations, the astrophysical neutrinos in this dedicated cascade sample are dominated (similar to 90%) by electron and tau flavors. The flux, observed in the sensitive energy range from 16 TeV to 2.6 PeV, is consistent with a single power-law model as expected from Fermi-type acceleration of high energy particles at astrophysical sources. We find the flux spectral index to be gamma = 2.53 +/- 0.07 and a flux normalization for each neutrino flavor of phi(astro) = 1.66(-0.27)(+0.25) at E-0 = 100 TeV, in agreement with IceCube's complementary muon neutrino results and with all-neutrino flavor fit results. In the measured energy range we reject spectral indices gamma <= 2.28 at >= 3 sigma significance level. Because of high neutrino energy resolution and low atmospheric neutrino backgrounds, this analysis provides the most detailed characterization of the neutrino flux at energies below similar to 100 TeV compared to previous IceCube results. Results from fits assuming more complex neutrino flux models suggest a flux softening at high energies and a flux hardening at low energies (p value >= 0.06). The sizable and smooth flux measured below similar to 100 TeV remains a puzzle. In order to not violate the isotropic diffuse gamma-ray background as measured by the Fermi Large Area Telescope, it suggests the existence of astrophysical neutrino sources characterized by dense environments which are opaque to gamma rays.
  •  
31.
  • Aartsen, M. G., et al. (author)
  • Constraints on Minute-Scale Transient Astrophysical Neutrino Sources
  • 2019
  • In: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 122:5
  • Journal article (peer-reviewed)abstract
    • High-energy neutrino emission has been predicted for several short-lived astrophysical transients including gamma-ray bursts (GRBs), core-collapse supernovae with choked jets, and neutron star mergers. IceCube's optical and x-ray follow-up program searches for such transient sources by looking for two or more muon neutrino candidates in directional coincidence and arriving within 100 s. The measured rate of neutrino alerts is consistent with the expected rate of chance coincidences of atmospheric background events and no likely electromagnetic counterparts have been identified in Swift follow-up observations. Here, we calculate generic bounds on the neutrino flux of short-lived transient sources. Assuming an E-2.5 neutrino spectrum, we find that the neutrino flux of rare sources, like long gamma-ray bursts, is constrained to < 5% of the detected astrophysical flux and the energy released in neutrinos (100 GeV to 10 PeV) by a median bright GRB-like source is < 10(52.5) erg. For a harder E-2.13 neutrino spectrum up to 30% of the flux could be produced by GRBs and the allowed median source energy is < 10(52) erg. A hypothetical population of transient sources has to be more common than 10(-5) Mpc(-3) yr(-1) (5 x 10(-8) Mpc(-3) yr(-1) for the E-2.13 spectrum) to account for the complete astrophysical neutrino flux.
  •  
32.
  • Aartsen, M. G., et al. (author)
  • Detection of a particle shower at the Glashow resonance with IceCube
  • 2021
  • In: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 591:7849, s. 220-224
  • Journal article (peer-reviewed)abstract
    • The Glashow resonance describes the resonant formation of a W− boson during the interaction of a high-energy electron antineutrino with an electron1, peaking at an antineutrino energy of 6.3 petaelectronvolts (PeV) in the rest frame of the electron. Whereas this energy scale is out of reach for currently operating and future planned particle accelerators, natural astrophysical phenomena are expected to produce antineutrinos with energies beyond the PeV scale. Here we report the detection by the IceCube neutrino observatory of a cascade of high-energy particles (a particle shower) consistent with being created at the Glashow resonance. A shower with an energy of 6.05 ± 0.72 PeV (determined from Cherenkov radiation in the Antarctic Ice Sheet) was measured. Features consistent with the production of secondary muons in the particle shower indicate the hadronic decay of a resonant W− boson, confirm that the source is astrophysical and provide improved directional localization. The evidence of the Glashow resonance suggests the presence of electron antineutrinos in the astrophysical flux, while also providing further validation of the standard model of particle physics. Its unique signature indicates a method of distinguishing neutrinos from antineutrinos, thus providing a way to identify astronomical accelerators that produce neutrinos via hadronuclear or photohadronic interactions, with or without strong magnetic fields. As such, knowledge of both the flavour (that is, electron, muon or tau neutrinos) and charge (neutrino or antineutrino) will facilitate the advancement of neutrino astronomy.
  •  
33.
  • Aartsen, M. G., et al. (author)
  • Detection of the Temporal Variation of the Sun's Cosmic Ray Shadow with the IceCube Detector
  • 2019
  • In: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 872:2
  • Journal article (peer-reviewed)abstract
    • We report on the observation of a deficit in the cosmic ray flux from the directions of the Moon and Sun with five years of data taken by the IceCube Neutrino Observatory. Between 2010 May and 2011 May the IceCube detector operated with 79 strings deployed in the glacial ice at the South Pole, and with 86 strings between 2011 May and 2015 May. A binned analysis is used to measure the relative deficit and significance of the cosmic ray shadows. Both the cosmic ray Moon and Sun shadows are detected with high statistical significance (>10σ) for each year. The results for the Moon shadow are consistent with previous analyses and verify the stability of the IceCube detector over time. This work represents the first observation of the Sun shadow with the IceCube detector. We show that the cosmic ray shadow of the Sun varies with time. These results make it possible to study cosmic ray transport near the Sun with future data from IceCube.
  •  
34.
  • Aartsen, M. G., et al. (author)
  • Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data
  • 2018
  • In: Physical Review D. - : AMER PHYSICAL SOC. - 2470-0010 .- 2470-0029. ; 98:6
  • Journal article (peer-reviewed)abstract
    • We report a quasidifferential upper limit on the extremely-high-energy (EHE) neutrino flux above 5 x 10(6) GeV based on an analysis of nine years of IceCube data. The astrophysical neutrino flux measured by IceCube extends to PeV energies, and it is a background flux when searching for an independent signal flux at higher energies, such as the cosmogenic neutrino signal. We have developed a new method to place robust limits on the EHE neutrino flux in the presence of an astrophysical background, whose spectrum has yet to be understood with high precision at PeV energies. A distinct event with a deposited energy above 10(6) GeV was found in the new two-year sample, in addition to the one event previously found in the seven-year EHE neutrino search. These two events represent a neutrino flux that is incompatible with predictions for a cosmogenic neutrino flux and are considered to be an astrophysical background in the current study. The obtained limit is the most stringent to date in the energy range between 5 x 10(6) and 2 x 10(10) GeV. This result constrains neutrino models predicting a three-flavor neutrino flux of E-nu(2)phi(nu e+nu mu+nu tau) similar or equal to 2 x 10(-8) GeV/cm(2) sec sr at 10(9) GeV. A significant part of the parameter space for EHE neutrino production scenarios assuming a proton-dominated composition of ultra-high-energy cosmic rays is disfavored independently of uncertain models of the extragalactic background light which previous IceCube constraints partially relied on.
  •  
35.
  • Aartsen, M. G., et al. (author)
  • eV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory
  • 2020
  • In: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 125:14
  • Journal article (peer-reviewed)abstract
    • The results of a 3 + 1 sterile neutrino search using eight years of data from the IceCube Neutrino Observatory are presented. A total of 305 735 muon neutrino events are analyzed in reconstructed energy-zenith space to test for signatures of a matter-enhanced oscillation that would occur given a sterile neutrino state with a mass-squared differences between 0.01 and 100 eV(2). The best-fit point is found to be at sin(2)(2 theta(24)) = 0.10 and Delta m(41)(2) = 4.5 eV(2), which is consistent with the no sterile neutrino hypothesis with a p value of 8.0%.
  •  
36.
  • Aartsen, M. G., et al. (author)
  • IceCube-Gen2 : the window to the extreme Universe
  • 2021
  • In: Journal of Physics G. - : Institute of Physics Publishing (IOPP). - 0954-3899 .- 1361-6471. ; 48:6
  • Journal article (peer-reviewed)abstract
    • The observation of electromagnetic radiation from radio to gamma-ray wavelengths has provided a wealth of information about the Universe. However, at PeV (10(15) eV) energies and above, most of the Universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the Universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. These energetic particles have millions of times higher energies than those produced in the most powerful particle accelerators on Earth. As neutrinos can escape from regions otherwise opaque to radiation, they allow an unique view deep into exploding stars and the vicinity of the event horizons of black holes. The discovery of cosmic neutrinos with IceCube has opened this new window on the Universe. IceCube has been successful in finding first evidence for cosmic particle acceleration in the jet of an active galactic nucleus. Yet, ultimately, its sensitivity is too limited to detect even the brightest neutrino sources with high significance, or to detect populations of less luminous sources. In this white paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the processes and environments that govern the Universe at the highest energies. IceCube-Gen2 is designed to: (a) Resolve the high-energy neutrino sky from TeV to EeV energies (b) Investigate cosmic particle acceleration through multi-messenger observations (c) Reveal the sources and propagation of the highest energy particles in the Universe (d) Probe fundamental physics with high-energy neutrinos IceCube-Gen2 will enhance the existing IceCube detector at the South Pole. It will increase the annual rate of observed cosmic neutrinos by a factor of ten compared to IceCube, and will be able to detect sources five times fainter than its predecessor. Furthermore, through the addition of a radio array, IceCube-Gen2 will extend the energy range by several orders of magnitude compared to IceCube. Construction will take 8 years and cost about $350M. The goal is to have IceCube-Gen2 fully operational by 2033. IceCube-Gen2 will play an essential role in shaping the new era of multi-messenger astronomy, fundamentally advancing our knowledge of the high-energy Universe. This challenging mission can be fully addressed only through the combination of the information from the neutrino, electromagnetic, and gravitational wave emission of high-energy sources, in concert with the new survey instruments across the electromagnetic spectrum and gravitational wave detectors which will be available in the coming years.
  •  
37.
  • Aartsen, M. G., et al. (author)
  • IceCube Search for Neutrinos Coincident with Compact Binary Mergers from LIGO-Virgo's First Gravitational-wave Transient Catalog
  • 2020
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 898:1, s. L10-
  • Journal article (peer-reviewed)abstract
    • Using the IceCube Neutrino Observatory, we search for high-energy neutrino emission coincident with compact binary mergers observed by the LIGO and Virgo gravitational-wave (GW) detectors during their first and second observing runs. We present results from two searches targeting emission coincident with the sky localization of each GW event within a 1000 s time window centered around the reported merger time. One search uses a model-independent unbinned maximum-likelihood analysis, which uses neutrino data from IceCube to search for pointlike neutrino sources consistent with the sky localization of GW events. The other uses the Low-Latency Algorithm for Multi-messenger Astrophysics, which incorporates astrophysical priors through a Bayesian framework and includes LIGO-Virgo detector characteristics to determine the association between the GW source and the neutrinos. No significant neutrino coincidence is seen by either search during the first two observing runs of the LIGO-Virgo detectors. We set upper limits on the time-integrated neutrino emission within the 1000 s window for each of the 11 GW events. These limits range from 0.02 to 0.7 . We also set limits on the total isotropic equivalent energy, E-iso, emitted in high-energy neutrinos by each GW event. These limits range from 1.7 x 10(51) to 1.8 x 10(55) erg. We conclude with an outlook for LIGO-Virgo observing run O3, during which both analyses are running in real time.
  •  
38.
  • Aartsen, M. G., et al. (author)
  • Measurement of atmospheric tau neutrino appearance with IceCube DeepCore
  • 2019
  • In: Physical Review D. - : AMER PHYSICAL SOC. - 2470-0010 .- 2470-0029. ; 99:3
  • Journal article (peer-reviewed)abstract
    • We present a measurement of atmospheric tau neutrino appearance from oscillations with three years of data from the DeepCore subarray of the IceCube Neutrino Observatory. This analysis uses atmospheric neutrinos from the full sky with reconstructed energies between 5.6 and 56 GeV to search for a statistical excess of cascadelike neutrino events which are the signature of nu(tau) interactions. For CC thorn NC (CC-only) interactions, we measure the tau neutrino normalization to be 0.73(-0.24)(+0.30) (0.57(-0.30)(+0.36)) and exclude the absence of tau neutrino oscillations at a significance of 3.2 sigma (2.0 sigma) These results are consistent with, and of similar precision to, a confirmatory IceCube analysis also presented, as well as measurements performed by other experiments.
  •  
39.
  • Aartsen, M. G., et al. (author)
  • Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert
  • 2018
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 361:6398, s. 147-151
  • Journal article (peer-reviewed)abstract
    • A high-energy neutrino event detected by IceCube on 22 September 2017 was coincident in direction and time with a gamma-ray flare from the blazar TXS 0506+056. Prompted by this association, we investigated 9.5 years of IceCube neutrino observations to search for excess emission at the position of the blazar. We found an excess of high-energy neutrino events, with respect to atmospheric backgrounds, at that position between September 2014 and March 2015. Allowing for time-variable flux, this constitutes 3.5 sigma evidence for neutrino emission from the direction of TXS 0506+056, independent of and prior to the 2017 flaring episode. This suggests that blazars are identifiable sources of the high-energy astrophysical neutrino flux.
  •  
40.
  • Aartsen, M. G., et al. (author)
  • Neutrino interferometry for high-precision tests of Lorentz symmetry with IceCube
  • 2018
  • In: Nature Physics. - : NATURE PUBLISHING GROUP. - 1745-2473 .- 1745-2481. ; 14:9, s. 961-966
  • Journal article (peer-reviewed)abstract
    • Lorentz symmetry is a fundamental spacetime symmetry underlying both the standard model of particle physics and general relativity. This symmetry guarantees that physical phenomena are observed to be the same by all inertial observers. However, unified theories, such as string theory, allow for violation of this symmetry by inducing new spacetime structure at the quantum gravity scale. Thus, the discovery of Lorentz symmetry violation could be the first hint of these theories in nature. Here we report the results of the most precise test of spacetime symmetry in the neutrino sector to date. We use high-energy atmospheric neutrinos observed at the IceCube Neutrino Observatory to search for anomalous neutrino oscillations as signals of Lorentz violation. We find no evidence for such phenomena. This allows us to constrain the size of the dimension-four operator in the standard-model extension for Lorentz violation to the 10(-28) level and to set limits on higher-dimensional operators in this framework. These are among the most stringent limits on Lorentz violation set by any physical experiment.
  •  
41.
  • Aartsen, M. G., et al. (author)
  • Search for nonstandard neutrino interactions with IceCube DeepCore
  • 2018
  • In: Physical Review D. - : AMER PHYSICAL SOC. - 2470-0010 .- 2470-0029. ; 97:7
  • Journal article (peer-reviewed)abstract
    • As atmospheric neutrinos propagate through the Earth, vacuumlike oscillations are modified by Standard Model neutral-and charged-current interactions with electrons. Theories beyond the Standard Model introduce heavy, TeV-scale bosons that can produce nonstandard neutrino interactions. These additional interactions may modify the Standard Model matter effect producing a measurable deviation from the prediction for atmospheric neutrino oscillations. The result described in this paper constrains nonstandard interaction parameters, building upon a previous analysis of atmospheric muon-neutrino disappearance with three years of IceCube DeepCore data. The best fit for the muon to tau flavor changing term is epsilon(mu tau) = -0.0005, with a 90% C.L. allowed range of -0.0067 < epsilon(mu tau) < 0.0081. This result is more restrictive than recent limits from other experiments for.mu t. Furthermore, our result is complementary to a recent constraint on epsilon(mu tau) using another publicly available IceCube high-energy event selection. Together, they constitute the world's best limits on nonstandard interactions in the mu - tau sector.
  •  
42.
  • Aartsen, M. G., et al. (author)
  • Search for PeV Gamma-Ray Emission from the Southern Hemisphere with 5 Yr of Data from the IceCube Observatory
  • 2020
  • In: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 891:1
  • Journal article (peer-reviewed)abstract
    • The measurement of diffuse PeV gamma-ray emission from the Galactic plane would provide information about the energy spectrum and propagation of Galactic cosmic rays, and the detection of a pointlike source of PeV gamma-rays would be strong evidence for a Galactic source capable of accelerating cosmic rays up to at least a few PeV. This paper presents several unbinned maximum-likelihood searches for PeV gamma-rays in the Southern Hemisphere using 5 yr of data from the IceTop air shower surface detector and the in-ice array of the IceCube Observatory. The combination of both detectors takes advantage of the low muon content and deep shower maximum of gamma-ray air showers and provides excellent sensitivity to gamma-rays between similar to 0.6 and 100 PeV. Our measurements of pointlike and diffuse Galactic emission of PeV gamma-rays are consistent with the background, so we constrain the angle-integrated diffuse gamma-ray flux from the Galactic plane at 2 PeV to 2.61 x 10(-19) cm(-2) s(-1) TeV-1 at 90% confidence, assuming an E-3 spectrum, and we estimate 90% upper limits on pointlike emission at 2 PeV between 10(-21) and 10(-20) cm(-2) s(-1) TeV-1 for an E-2 spectrum, depending on decl. Furthermore, we exclude unbroken power-law emission up to 2 PeV for several TeV gamma-ray sources observed by the High Energy Spectroscopic System and calculate upper limits on the energy cutoffs of these sources at 90% confidence. We also find no PeV gamma-rays correlated with neutrinos from IceCube's high-energy starting event sample. These are currently the strongest constraints on PeV gamma-ray emission.
  •  
43.
  • Aartsen, M. G., et al. (author)
  • Searches for neutrinos from cosmic-ray interactions in the Sun using seven years of IceCube data
  • 2021
  • In: Journal of Cosmology and Astroparticle Physics. - : Institute of Physics Publishing (IOPP). - 1475-7516. ; :2
  • Journal article (peer-reviewed)abstract
    • Cosmic-ray interactions with the solar atmosphere are expected to produce particle showers which in turn produce neutrinos from weak decays of mesons. These solar atmospheric neutrinos (SA nu s) have never been observed experimentally. A detection would be an important step in understanding cosmic-ray propagation in the inner solar system and the dynamics of solar magnetic fields. SA nu s also represent an irreducible background to solar dark matter searches and a detection would allow precise characterization of this background. Here, we present the first experimental search based on seven years of data collected from May 2010 to May 2017 in the austral winter with the IceCube Neutrino Observatory. An unbinned likelihood analysis is performed for events reconstructed within 5 degrees of the center of the Sun. No evidence for a SA nu flux is observed. After inclusion of systematic uncertainties, we set a 90% upper limit of 1.02(-0.18)(+0.20).10(-13) GeV(-1)cm(-2)s(-1) at 1 TeV.
  •  
44.
  • Aartsen, M. G., et al. (author)
  • Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube Neutrino Telescope
  • 2020
  • In: Physical Review D. - : AMER PHYSICAL SOC. - 1550-7998 .- 1550-2368. ; 102:5
  • Journal article (peer-reviewed)abstract
    • We report in detail on searches for eV-scale sterile neutrinos, in the context of a 3 + 1 model, using eight years of data from the IceCube Neutrino Telescope. By analyzing the reconstructed energies and zenith angles of 305,735 atmospheric nu(mu) and (nu) over bar (mu) events we construct confidence intervals in two analysis spaces: sin(2)(2 theta(24)) vs Delta m(41)(2) under the conservative assumption theta(34) = 0; and sin(2)(2 theta(24)) vs sin(2)(2 theta(34)) given sufficiently large Delta m(41)(2) that fast oscillation features are unresolvable. Detailed discussions of the event selection, systematic uncertainties, and fitting procedures are presented. No strong evidence for sterile neutrinos is found, and the best-fit likelihood is consistent with the no sterile neutrino hypothesis with a p value of 8% in the first analysis space and 19% in the second.
  •  
45.
  • Aartsen, M. G., et al. (author)
  • The Detection Of A Sn Iin In Optical Follow-Up Observations Of Icecube Neutrino Events
  • 2015
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 811:1
  • Journal article (peer-reviewed)abstract
    • The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In 2012 March, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN IIn) PTF12csy was found 0.degrees 2 away from the neutrino alert direction, with an error radius of 0.degrees 54. It has a redshift of z = 0.0684, corresponding to a luminosity distance of about 300 Mpc and the Pan-STARRS1 survey shows that its explosion time was at least 158 days (in host galaxy rest frame) before the neutrino alert, so that a causal connection is unlikely. The a posteriori significance of the chance detection of both the neutrinos and the SN at any epoch is 2.2 sigma within IceCube's 2011/12 data acquisition season. Also, a complementary neutrino analysis reveals no long-term signal over the course of one year. Therefore, we consider the SN detection coincidental and the neutrinos uncorrelated to the SN. However, the SN is unusual and interesting by itself: it is luminous and energetic, bearing strong resemblance to the SN IIn 2010jl, and shows signs of interaction of the SN ejecta with a dense circumstellar medium. High-energy neutrino emission is expected in models of diffusive shock acceleration, but at a low, non-detectable level for this specific SN. In this paper, we describe the SN PTF12csy and present both the neutrino and electromagnetic data, as well as their analysis.
  •  
46.
  • Aartsen, M. G., et al. (author)
  • Velocity independent constraints on spin-dependent DM-nucleon interactions from IceCube and PICO
  • 2020
  • In: European Physical Journal C. - : Springer Nature. - 1434-6044 .- 1434-6052. ; 80:9
  • Journal article (peer-reviewed)abstract
    • Adopting the Standard Halo Model (SHM) of an isotropic Maxwellian velocity distribution for dark matter (DM) particles in the Galaxy, the most stringent current constraints on their spin-dependent scattering cross-section with nucleons come from the IceCube neutrino observatory and the PICO-60 C3F8 superheated bubble chamber experiments. The former is sensitive to high energy neutrinos from the self-annihilation of DM particles captured in the Sun, while the latter looks for nuclear recoil events from DM scattering off nucleons. Although slower DM particles are more likely to be captured by the Sun, the faster ones are more likely to be detected by PICO. Recent N-body simulations suggest significant deviations from the SHM for the smooth halo component of the DM, while observations hint at a dominant fraction of the local DM being in substructures. We use the method of Ferrer et al. (JCAP 1509: 052, 2015) to exploit the complementarity between the two approaches and derive conservative constraints on DM-nucleon scattering. Our results constrain sigma SD less than or similar to 3x10-39cm2 (6x10-38cm2) at greater than or similar to 90% C.L. for a DM particle of mass 1 TeV annihilating into tau+tau- (bb) with a local density of rho DM=0.3GeV/cm3. The constraints scale inversely with rho DM and are independent of the DM velocity distribution.
  •  
47.
  • Abazov, V. M., et al. (author)
  • Measurement of the t-channel single top quark production cross section
  • 2010
  • In: Physics Letters B. - : Elsevier BV. - 0370-2693 .- 1873-2445. ; 682:4-5, s. 363-369
  • Journal article (peer-reviewed)abstract
    • The DO Collaboration reports direct evidence for electroweak production of single top quarks through the t-channel exchange of a virtual W boson. This is the first analysis to isolate an individual single top quark production channel. We select events containing an isolated electron or muon, missing transverse energy, and two, three or four jets from 2.3 fb(-1) of p (p) over bar collisions at the Fermilab Tevatron Collider. One or two of the jets are identified as containing a b hadron. We combine three multivariate techniques optimized for the t-channel process to measure the t- and s-channel cross sections simultaneously. We measure cross sections of 3.14(-0.80)(+0.94) pb for the t-channel and 1.05 +/- 0.81 pb for the s-channel. The measured t-channel result is found to have a significance of 4.8 standard deviations and is consistent with the standard model prediction.
  •  
48.
  • Abazov, V. M., et al. (author)
  • Search for single top quarks in the tau plus jets channel using 4.8 fb(-1) of p(p)over-bar collision data
  • 2010
  • In: Physics Letters B. - : Elsevier BV. - 0370-2693 .- 1873-2445. ; 690:1, s. 5-14
  • Journal article (peer-reviewed)abstract
    • We present the first direct search for single top quark production using reconstructed tau leptons in the final state. The search is based on 4.8 fb(-1) of integrated luminosity collected in p (p) over bar collisions at root s= 1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. We select events with a final state including an isolated tau lepton. missing transverse energy, two or three jets, one or two of them being identified as b quark jet. We use a multivariate technique to discriminate signal from background. The number of events observed in data in this final state is consistent with the signal plus background expectation. We set in the tau + jets channel an upper limit on the single top quark cross section of 7.3 pb at the 95% C.L. This measurement allows a gain of 4% in expected sensitivity for the observation of single top production when combining it with electron + jets and muon + jets channels already published by the DO Collaboration with 2.3 fb(-1) of data. We measure a combined cross section of 3.84(-0.83)(+0.89) pb, which is the most precise measurement to date.
  •  
49.
  • Abazov, V. M., et al. (author)
  • Search for the Associated Production of a b Quark and a Neutral Supersymmetric Higgs Boson that Decays into τ Pairs
  • 2010
  • In: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 104:15
  • Journal article (peer-reviewed)abstract
    • We report results from a search for production of a neutral Higgs boson in association with a b quark. We search for Higgs decays to tau pairs with one tau subsequently decaying to a muon and the other to hadrons. The data correspond to 2: 7 fb(-1) of p (p) over bar collisions recorded by the D0 detector at.. root s = 1.96 TeV. The data are found to be consistent with background predictions. The result allows us to exclude a significant region of parameter space of the minimal supersymmetric model.
  •  
50.
  • Abbasi, R., et al. (author)
  • Calibration and characterization of the IceCube photomultiplier tube
  • 2010
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 618:1-3, s. 139-152
  • Journal article (peer-reviewed)abstract
    • Over 5000 PMTs are being deployed at the South Pole to compose the IceCube neutrino observatory. Many are placed deep in the ice to detect Cherenkov light emitted by the products of high-energy neutrino interactions, and others are frozen into tanks on the surface to detect particles from atmospheric cosmic ray showers. IceCube is using the 10-in. diameter R7081-02 made by Hamamatsu Photonics. This paper describes the laboratory characterization and calibration of these PMTs before deployment. PMTs were illuminated with pulses ranging from single photons to saturation level. Parameterizations are given for the single photoelectron charge spectrum and the saturation behavior. Time resolution, late pulses and afterpulses are characterized. Because the PMTs are relatively large, the cathode sensitivity uniformity was measured. The absolute photon detection efficiency was calibrated using Rayleigh-scattered photons from a nitrogen laser. Measured characteristics are discussed in the context of their relevance to IceCube event reconstruction and simulation efforts. (C) 2010 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 11372
Type of publication
journal article (8944)
conference paper (1387)
doctoral thesis (353)
research review (184)
other publication (129)
licentiate thesis (126)
show more...
book chapter (98)
artistic work (54)
reports (42)
book (25)
editorial collection (13)
review (9)
editorial proceedings (8)
show less...
Type of content
peer-reviewed (10075)
other academic/artistic (1204)
pop. science, debate, etc. (93)
Author/Editor
Reimer, O. (280)
Reimer, A. (264)
Aalto, Susanne, 1964 (221)
Ackermann, M. (205)
Becherini, Yvonne (204)
Quirrenbach, A. (196)
show more...
Bregeon, J. (195)
Vlemmings, Wouter, 1 ... (187)
Conrad, Jan (185)
Katz, U. (184)
Funk, S. (184)
Lemoine-Goumard, M. (181)
Longo, F. (176)
Grondin, M. -H (176)
Wolke, Magnus (172)
Kupsc, Andrzej (171)
Bulik, T. (171)
Lohse, T. (169)
Fontaine, G. (167)
Mizuno, T. (167)
Boisson, C. (164)
Hofmann, W. (164)
Giglietto, N. (164)
Khelifi, B. (163)
Mazziotta, M. N. (163)
Kluzniak, W. (162)
Moulin, E. (162)
Stawarz, L. (161)
Morselli, A. (161)
Glicenstein, J. F. (160)
de Naurois, M. (160)
Wagner, S. J. (160)
Kosack, K. (159)
Moderski, R. (159)
Venter, C. (159)
Lenain, J. -P (158)
Niemiec, J. (158)
Rudak, B. (158)
Schwanke, U. (158)
Zdziarski, A. A. (158)
Rieger, F. (157)
Santangelo, A. (157)
Zech, A. (157)
Aharonian, F. (156)
Egberts, K. (156)
Marandon, V. (156)
Ohm, S. (156)
Ostrowski, M. (156)
Sol, H. (156)
Loparco, F. (156)
show less...
University
Stockholm University (3467)
Uppsala University (2603)
Chalmers University of Technology (2597)
Lund University (1904)
Royal Institute of Technology (1765)
Linnaeus University (406)
show more...
University of Gothenburg (276)
Luleå University of Technology (197)
Umeå University (169)
Malmö University (151)
Halmstad University (79)
Kristianstad University College (40)
Högskolan Dalarna (29)
Karlstad University (24)
Linköping University (20)
RISE (17)
Jönköping University (16)
Örebro University (11)
Mid Sweden University (7)
University West (3)
Karolinska Institutet (3)
Blekinge Institute of Technology (3)
Mälardalen University (2)
Swedish Museum of Natural History (2)
Swedish University of Agricultural Sciences (2)
University of Gävle (1)
University College of Arts, Crafts and Design (1)
show less...
Language
English (11204)
Swedish (156)
Danish (5)
Undefined language (3)
German (2)
Spanish (1)
show more...
Chinese (1)
show less...
Research subject (UKÄ/SCB)
Natural sciences (11371)
Engineering and Technology (367)
Social Sciences (76)
Humanities (47)
Medical and Health Sciences (18)
Agricultural Sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view