SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "AMNE:(NATURVETENSKAP Biologi Biofysik) "

Search: AMNE:(NATURVETENSKAP Biologi Biofysik)

  • Result 1-50 of 2701
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bag, Pushan, 1993- (author)
  • How could Christmas trees remain evergreen? : photosynthetic acclimation of Scots pine and Norway spruce needles during winter
  • 2022
  • Doctoral thesis (other academic/artistic)abstract
    • Plants and other green organisms harvest sunlight by green chlorophyll pigments and covertit to chemical energy (sugars) and oxygen in a process called photosynthesis providing the foundation for life on Earth. Although it is unanimously believed that oceanic phytoplanktons are the main contributors to the global photosynthesis, the contribution of coniferous boreal forests distributed across vast regions of the northern hemisphere cannot be undermined. Hence boreal forests account signifificantly for social, economical and environmental sustainability. Not only do conifers thrive in the tundra regions with extreme climate, but they also maintain their needles green over the boreal winter. A question remains; what makes them so resilient? In this respect, we aimed to understand the remarkable winter adaptation strategies in two dominant boreal coniferous species,i.e., Pinus sylvestris and Picea abies. First, we mapped the transcriptional landscape in Norway spruce (Picea abies) needles over the annual cycle. Transcriptional changes in the nascent needles reflflected a sequence of developmental processes and active vegetative growth during early summer and summer. Later after maturation, transcriptome reflflected activated defense against biotic factors and acclimationin response to abiotic environmental cues such as freezing temperatures during winter. Secondly, by monitoring the photosynthetic performance of Scot pine needles, we found that the trees face extreme stress during the early spring (Feb-Mar) when sub-zero temperatures are accompanied by high solar radiation. At this time, drastic changes occur in the thylakoid membranes of the chloroplast that allows the mixing of photosystem I and photosystem II that typically remain laterally segregated. This triggers direct energy transfer from PSII to PSI and thus protects PSII from damage. Furthermore, we found that this loss of lateral segregation may be a consequence of triple phosphorylationof Lhcb1 (Light harvesting complex1 of photosystem II). The structural changes in thylakoid membranes also lead to changes inthe thylakoid macro domain organisationand pigment protein composition. Furthermore, we discovered that while PSII is protected by direct energy transfer, the protection of PSI is provided through photoreduction of oxygen by flavodiiron proteins, which in turn allows P700 to stay in an oxidised state necessary for direct energy transfer. These coordinated cascades of changes concomitantly protect both PSI and PSII to maintain the needles green over the winter.
  •  
2.
  • Bertaccini, Edward J, et al. (author)
  • Modeling Anesthetic Binding Sites within the Glycine Alpha One Receptor Based on Prokaryotic Ion Channel Templates : The Problem with TM4
  • 2010
  • In: Journal of chemical information and modeling. - : American Chemical Society (ACS). - 1549-960X .- 1549-9596. ; 50:12, s. 2248-2255
  • Journal article (peer-reviewed)abstract
    • Ligand-gated ion channels (LGICs) significantly modulate anesthetic effects. Their exact molecular structure remains unknown. This has led to ambiguity regarding the proper amino acid alignment within their 3D structure and, in turn, the location of any anesthetic binding sites. Current controversies suggest that such a site could be located in either an intra- or intersubunit locale within the transmembrane domain of the protein. Here, we built a model of the glycine alpha one receptor (GlyRa1) based on the open-state structures of two new high-resolution ion channel templates from the prokaryote, Gloebacter violaceus (GLIC). Sequence scoring suggests reasonable homology between GlyRa1 and GLIC. Three of the residues notable for modulating anesthetic action are on transmembrane segments 1-3 (TM1-3): (ILE229, SER 267, and ALA 288). They line an intersubunit interface, in contrast to previous models. However, residues from the fourth transmembrane domain (TM4) that are known to modulate a variety of anesthetic effects are quite distant from this putative anesthetic binding site. While this model can account for a large proportion of the physicochemical data regarding such proteins, it cannot readily account for the alterations on anesthetic effects that are due to mutations within TM4.
  •  
3.
  •  
4.
  • Tapani, Sofia, 1982 (author)
  • Stochastic modelling and analysis of early mouse development
  • 2011
  • Doctoral thesis (other academic/artistic)abstract
    • The aim of this thesis is to model and describe dynamical events for biological cells using statistical and mathematical tools. The thesis includes five papers that all relate to stochastic modelling of cells. In order to understand the development and patterning of the early mammalian embryo, stochastic modelling has become a more important tool than ever. It allows for studying the processes that mediate the transition from pluripotency of the embryonic cells to their differentiation. It is still unclear whether the positions of cells determine their future fates. One alternative possibility is that cells are pre-specified at random positions and then sort according to a already set fate. Mouse embryonic cells are thought to be equivalent in their developmental properties until approaching the eight-cell stage. Some biological studies show, in comparison, that patterning can be present already at sperm entry and in the pronuclei migration. We investigate in Paper I the dynamics of the pronuclei migration by analysing their trajectories and find that not only do the pronuclei follow a noise corrupted path towards the centre of the egg but they also have some attraction to each other which affects their dynamics. Continuing in Paper II and III, we use these results to model this behaviour with a coupled stochastic differential equation model. This enables us to simulate distributions that describe the meeting plane between pronuclei which in turn can be related to the orientation of the first cleavage of the egg. Our results show that adding randomness in sperm entry point is different from the randomness added through the environment of the egg. We are also able to show that data sets with normal eggs and eggs treated with an actin growth inhibitor give rise to considerably different model dynamics, suggesting that the treatment is affecting the migration in an invasive way. Altering the pronuclei dynamics can alter the polarity of the egg and may transfer into the later axis-formation process. Invasiveness of experimental procedures is a difficult issue to handle. The alternative to invasive procedures is not appealing since it means that important developmental features may not be discovered because of individual variability and noise, leading to guesswork of the underlying mechanisms. The embryonic cells are easily affected by treatments performed to make the measuring, made by hand, easier or by the light exposure of the microscope. Treatments as such are used for example for producing flourescent proteins in membranes or slowing processes down. Paper IV and Paper V serve to analyse how light induced stress affects yeast cells and we employ a method for analysing the noisy non-stationary time series, which are a result of the yeast experiments, using wavelet decomposition.
  •  
5.
  • Wieloch, Thomas, 1979-, et al. (author)
  • Intramolecular carbon isotope signals reflect metabolite allocation in plants
  • 2022
  • In: Journal of Experimental Botany. - : Oxford University Press. - 0022-0957 .- 1460-2431. ; 73:8, s. 2558-2575
  • Journal article (other academic/artistic)abstract
    • Stable isotopes at natural abundance are key tools to study physiological processes occurring outside the temporal scope of manipulation and monitoring experiments. Whole-molecule carbon isotope ratios (13C/12C) enable assessments of plant carbon uptake yet conceal information about carbon allocation. Here, we identify an intramolecular 13C/12C signal at tree-ring glucose C-5 and C-6 and develop experimentally testable theories on its origin. More specifically, we assess the potential of processes within C3 metabolism for signal introduction based (inter alia) on constraints on signal propagation posed by metabolic networks. We propose that the intramolecular signal reports carbon allocation into major metabolic pathways in actively photosynthesizing leaf cells including the anaplerotic, shikimate, and non-mevalonate pathway. We support our theoretical framework by linking it to previously reported whole-molecule 13C/12C increases in cellulose of ozone-treated Betula pendula and a highly significant relationship between the intramolecular signal and tropospheric ozone concentration. Our theory postulates a pronounced preference for leaf cytosolic triose-phosphate isomerase to catalyse the forward reaction in vivo (dihydroxyacetone phosphate to glyceraldehyde 3-phosphate). In conclusion, intramolecular 13C/12C analysis resolves information about carbon uptake and allocation enabling more comprehensive assessments of carbon metabolism than whole-molecule 13C/12C analysis.
  •  
6.
  • Bárány-Wallje, Elsa, 1979- (author)
  • Biophysical studies of cell-penetrating peptides and of the RNR inhibitor Sml1
  • 2008
  • Doctoral thesis (other academic/artistic)abstract
    • Several short peptides, so called cell-penetrating peptides, have the capability to transport large hydrophilic cargos through the cell membrane. The objective is to use these peptides as drug carriers and thereby enhance the uptake of drugs into cells.Three different cell-penetrating peptides are characterized in this thesis. Structure and dynamics of transportan when bound to phospholipid bicelles was determined using NMR. The hydrophobic peptide transportan and its deletion analogue Tp10 both bind to lipid head-group region of the membrane as amphipathic α-helices (papers I & II) and they were found to cause leakage in vesicles (paper IV). The membrane disturbing effect is probably part of how these peptides are translocated through the cell membrane, but also an explanation to why these peptides are found to be toxic in vivo. The high degree of toxicity limits their usefulness. We however also found that the membrane disturbing effect was significantly reduced when a large hydrophilic cargo was attached, which indicates that the properties of the whole peptide-cargo complex has to be taken into account (paper IV).The highly charged cell-penetrating peptide penetratin is not nearly as membrane disturbing as transportan (papers III and IV). Penetratin binds preferably to negatively charged membranes by electrostatic interactions. We used several different techniques to investigate if penetratin could be translocated through membrane model systems. All experiments consistently suggested that penetratin could not be translocated into model systems. It indicates an endocytotic uptake mechanism into cells rather than a direct membrane penetration (paper III). The ribonucleotide reductase inhibitor protein Sml1 was characterized using NMR and CD spectroscopy (paper V). Three different secondary structure elements were found, in agreement with previous NMR studies, but Sml1 does not have a well defined three-dimensional structure in solution. The N-terminus includes an α-helical region between residues 4-14 and we propose that this region interacts with the C-terminal part of the protein in the monomeric form. The N-terminus is also suggested to be a dimerization interface. Dimers are formed at concentrations above 10 µM in solution. The C-terminal region of Sml1 includes an α-helix between residues 61-80 that is crucial for binding and inhibition of RNR.
  •  
7.
  • Biverståhl, Henrik, 1977- (author)
  • Structure and Dynamics of Membrane Associated Peptides
  • 2008
  • Doctoral thesis (other academic/artistic)abstract
    • The peptide-membrane interaction is a key element for many biological functions, from cell signaling to cell internalization. In this thesis the peptide-membrane interaction of six different peptides have been studied with respect to their structure, membrane location and dynamics with spectroscopic methods. Penetratin and the N-terminal sequence of the bovine prion protein (1-30), bPrPp, belong to a class of peptides called cell-penetrating peptides (CPPs). CPPs are short, often highly basic peptides that have the ability to facilitate translocation of an attached hydrophilic cargo over cell-membrane. CD and NMR spectroscopy reveled that penetratin, the (supposedly) non-penetrating mutant pentratin(W48F,W56F) and bPrPp are all highly helical in membrane mimicking media. The position with respect to the bilayer is, however, very different for the three peptides, Penetratin is residing on the membrane surface with a slight tilt while bPrPp is transmembrane and penetratin(W48F,W56F) is somewere in between. These differences can explain the different impact these peptides have on membranesWe have also shown that penetratin can escape from vesicles when an electrochemical or pH gradient is present over the membrane, which support endocytotic internalization.Melittin is a 26 amino acid long residue long peptide and is the major component of the European honey bee venom. Many studies have shown that melittin induces a transient pore that causes leakage in both natural and artificial membranes. In paper IV we used melittin as a model-peptide to investigate how peptides affect lipid dynamics in model-membranes. We showed that carbon-13 relaxation of the lipids could be used to characterize peptide induced changes in lipid dynamicsThe voltage sensor is a domain of the voltage-dependent potassium channel containing several positively charged amino acids (usually arginines). The sensor undergoes a conformational change as a response to a membrane potential. Here, we have studied the membrane location of two fragments corresponding to the “paddle” domain of two different potassium channels, KvAP and HsapBK. NMR and fluorescence studies indicate that both peptides reside inside of the hydrophobic interior of the bilayer, which show that the fragment behave the same way as it does in the intact protein.All six of these peptides interact strongly with model-membranes and adopt a helical conformation even though they have very different biological function. The difference in biological function can instead be explained by the variation in membrane position and membrane dynamics of these peptides
  •  
8.
  •  
9.
  • Friedman, Ran (author)
  • Proton Transfer on the Molecular Surface of Proteins and Model Systems
  • 2009
  • In: Israel Journal of Chemistry. - 0021-2148. ; 49:2, s. 149-153
  • Journal article (peer-reviewed)abstract
    • Proton transfer (PT) reactions take place oil the molecular Surface of proteins, membranes, ionic polymers, and other molecules. The rates of the reactions can be followed experimentally, while the atomistic details can be elucidated by molecular modeling. This manuscript gives a brief overview of the use of computer simulations and molecular modeling, in conjuction with experiments, to study PT reactions oil the surface of solvated molecules. An integrative approach is discussed, where molecular dynamics simulations are performed with a protein, and quantum-mechanics-based calculations are performed oil a small molecule. The simulation results allow the identification of the necessary conditions that yield PT reactions oil the molecular surface. The reactions are efficient when they involve a donor and acceptor located a few A apart and under the influence of a negative electrostatic field. In proton-pumping proteins, it is possible to identify such conditions a priori and locate proton-attracting antenna domains without the need to mutate each potential donor and acceptor. Based on density functional theory calculations, the arrangement of water molecules that interconnect the donor and acceptor moieties is suggested as the rate-limiting step for proton transfer on the molecular surface.
  •  
10.
  • Hugonin, Loïc, 1978- (author)
  • Spectroscopic studies of dynorphin neuropeptides and the amyloid beta-peptide : The consequences of biomembrane interactions
  • 2007
  • Doctoral thesis (other academic/artistic)abstract
    • Dynorphin A, dynorphin B and big dynorphin are endogenous opioid neuropeptides. They play an important role in a wide variety of physiological functions such as regulation of pain processing and memory acquisition. Such actions are generally mediated through the κ-receptors. Besides opioid receptor interactions, dynorphins have non-opioid physiological activities which result in excitotoxic effects in neuropathic pain, spinal cord and brain injury. In order to gain insight into the mechanisms of the non-opioid interactions of dynorphins with the cell, spectroscopic membrane-interaction studies were performed. We demonstrated that big dynorphin and dynorphin A, but not dynorphin B, penetrated into cells. All dynorphins interact with the membrane model systems with weak membrane-induced secondary structure. Big dynorphin and dynorphin A induce membrane perturbation, calcein leakage and cause permeability of the membrane to calcium in large unilamellar vesicles (LUV). But dynorphins do not translocate in the LUV membrane model system and there is a strong electrostatic contribution to the interaction of the peptides with the membrane bilayer.In the second part of this thesis we investigated the amyloid β(1-40) peptide (Aβ). This peptide is related to Alzheimer’s disease and its soluble oligomeric aggregates are reported to contribute to the pathology of the disease. In order to provide better insight into the aggregation processes we examined the membrane interaction of Aβ in a model system. Gradual addition of small amounts of sodium dodecyl sulfate to an aqueous solution gives rise to a secondary structure conversion of Aβ peptide. The conversion can be described as a two state process, from random coil to β-sheet with formation of high molecular mass complexes between peptide and detergent, possibly mimicking the behavior of the peptide when aggregating at a cell membrane surface. At high detergent concentrations there is a transition from β-sheet to α-helix conformation.
  •  
11.
  • Korayem, Ahmed, et al. (author)
  • Evidence for an immune function of lepidopteran silk proteins
  • 2007
  • In: Biochemical and Biophysical Research Communications - BBRC. - : Elsevier BV. - 0006-291X .- 1090-2104. ; 352:2, s. 317-322
  • Journal article (peer-reviewed)abstract
    • Hemolymph coagulation stops bleeding and protects against infection. Clotting factors include both proteins that are conserved during evolution as well as more divergent proteins in different species. Here we show that several silk proteins also appear in the clot of the greater wax moth Galleria mellonella. RT-PCR analysis reveals that silk proteins are expressed in immune tissues and induced upon wounding in both Galleria and Ephestia kuehniella, a second pyralid moth. Our results support the idea that silk proteins were co-opted for immunity and coagulation during evolution.
  •  
12.
  • Lepp, Håkan, 1977- (author)
  • Experimental studies of proton translocation reactions in biological systems : Electrogenic events in heme-copper oxidases
  • 2008
  • Doctoral thesis (other academic/artistic)abstract
    • Terminal heme-copper oxidases (HCuOs) are transmembrane proteins that catalyze the final step in the respiratory chain - the reduction of O2 to H2O, coupled to energy conservation by generation of an electrochemical proton gradient. The most extensively investigated of the HCuOs are the aa3-type oxidases, to which cytochrome c oxidase (CytcO) belongs, which uses energy released in the O2-reduction for proton pumping. The bacterial nitric oxide reductases (NORs) have been identified as divergent members of the HCuO-superfamily and are involved in the denitrification pathway where they catalyze the reduction of NO to NO2. Although as exergonic as O2-reduction, this reaction is completely non-electrogenic. Among the traditional HCuOs, the cbb3-type oxidases are the closest relatives to the NORs and as such provide a link between the aa3 oxidases and the NORs. The cbb3 oxidases have been shown to pump protons with nearly the same efficiency as the aa3 oxidases, despite low sequence similarity.This thesis is focused on measurements of membrane potential generating reactions during catalysis in the CytcO and the cbb3 oxidase from Rhodobacter sphaeroides, and the NOR from Paracoccus denitrificans, using a time resolved electrometric technique. The pH dependence of the membrane potential generation in CytcO showed that only one proton is taken up and that no protons are pumped, at high pH. An additional kinetic phase was also detected at high pH that presumably originates to from charge-transfer within the K-pathway. Possible reasons for uncoupling, and the extent of charge-transfer, were studied using structural variants of CytcO. The measurements established that electrons and protons are taken up from the same side of the membrane in NOR. In addition, the directionality for proton uptake in cbb3 oxidase appeared to be dependent on the choice of substrate while proton pumping was indicated to occur only during O2-reduction.
  •  
13.
  • Oglęcka, Kamila, 1977- (author)
  • Biophysical studies of membrane interacting peptides derived from viral and Prion proteins
  • 2007
  • Doctoral thesis (other academic/artistic)abstract
    • This thesis focuses on peptides derived from the Prion, Doppel and Influenza haemagglutinin proteins in the context of bilayer interactions with model membranes and live cells. The studies involve spectroscopic techniques like fluorescence, fluorescence correlation spectroscopy (FCS), circular and linear dichroism (CD and LD), confocal fluorescence microscopy and NMR.The peptides derived from the Prion and Doppel proteins combined with their subsequent nuclear localization-like sequences, makes them resemble cell-penetrating peptides (CPPs). mPrPp(1-28), corresponding to the first 28 amino acids of the mouse PrP, was shown to translocate across cell membranes, concomitantly causing cell toxicity. Its bovine counterpart bPrPp(1-30) was demonstrated to enter live cells, with and without cargo, mainly via macropinocytosis. The mPrPp(23-50) peptide sequence overlaps with mPrPp(1-28) sharing the KKRPKP sequence believed to encompass the driving force behind translocation. mPrPp(23-50) was however found unable to cross over cell membranes and had virtually no perturbing effects on membranes.mDplp(1-30), corresponding of the first 30 N-terminal amino acids of the Doppel protein, was demonstrated to be almost as membrane perturbing as melittin. NMR experiments in bicelles implied a transmembrane configuration of its alpha-helix, which was corroborated by LD in vesicle bilayers. The positioning of the induced alpha-helix in transportan was found to be more parallel to the bilayer surface in the same model system.Positioning of the native Influenza derived fusion peptide in bilayers showed no pH dependence. The glutamic acid enriched variant however, changed its insertion angle from 70 deg to a magic angle alignment relative the membrane normal upon a pH drop from 7.4 to 5.0. Concomitantly, the alpha-helical content dramatically rose from 18% to 52% in partly anionic membranes, while the native peptide’s helicity increased only from 39% to 44% in the same conditions.
  •  
14.
  • Papadopoulos, Evangelos, 1975- (author)
  • Structural and functional studies of biomolecules with NMR and CD spectroscopy.
  • 2008
  • Doctoral thesis (other academic/artistic)abstract
    • Experimentally derived biomolecular structures were determined by Nuclear Magnetic Resonance (NMR). The properties of selected peptides and proteins in solution and in membrane mimicking micelles were observed by circular Dichroism (CD), mass spectrometry (MS), and other spectroscopic techniques.The mDpl(1-30) peptide (30 residues) of the mouse Doppel protein was found to be positioned as an α-helix in a DHPC micelle. The same peptide can disrupt and cause leakage in small unilamellar vesicles.Single D-amino acid isomers of Trp-cage (20 residues), the smallest peptide with a protein-like fold, were analyzed by CD spectroscopy and were found to have different secondary structures and melting temperatures. They were compared against MS measurements specially designed to reveal the secondary structure of proteins.We studied a novel protein in E. coli of unknown structure that is encoded by the putative transcription factor ORF: ygiT (131 residues). This protein comprises a helix-turn-helix (HTH) domain in the C-terminus and contains two CxxC motives in the N-terminal domain, which binds Zn. This protein was named 2CxxC. We succeeded in overexpressing and purifying 2CxxC in E. coli with enough yield for a 13C, 15N uniformly labeled NMR sample. The chemical shift assignment was completed and the NMR structure was calculated in reducing, slightly acidic conditions (1mM DTT, pH 5.5). The determined HTH domain shows good similarity with structures predicted by a homology search, while the N-terminal domain has no other homologous structure in the Protein Data Bank (PDB).The structure of the paddle region (27 residues) of the HsapBK(233-260) voltage and Ca+2 activated potassium channel, in DPC micelles, was determined by NMR. It shows a helix-turn-helix loop, which agrees well with the expected structure and could help to verify the proposed models of the voltage gating mechanism.The C-repressor (dimer of 99 residues) of bacteriophage P2 was analyzed by NMR. We assigned the chemical shifts and NMR structure determination is under way.
  •  
15.
  •  
16.
  • Sehlstedt, Ulrica, 1969- (author)
  • A biophysical study of nucleic acid interactions with analogues and drugs
  • 1998
  • Doctoral thesis (other academic/artistic)abstract
    • work presented in this thesis concerns studies on the physicochemical nature of interactions between nucleic acids and small ligands. The outcome of such studies can yield insights at a molecular level into the physiological mechanisms of action of biologically active nucleic-acid binding molecules. The thesis work includes investigations of a number of such low molecular weight compounds designed for nucleic acid sequence probing or therapeutic use. The interactions have been characterised by means of various optical spectroscopic techniques - including linear dichroism, circular dichroism and fluorescence - as well as nuclear magnetic resonance spectroscopy.The fluorescent dye 4',6-diamidino-2-phenylindole (DAPI) is known to adopt different DNA binding modes in regions containing consecutive AT base-pairs as compared to those consisting of long sequences of GC base-pairs. In mixed sequence DNA, DAPI exhibits a pronounced preference to bind in the minor groove of AT rich regions. To verify whether the variation in ligand mode of binding could be attributed to the exocyclic N2 group of guanine, guanines in the polynucleotide [poly(dG-dC)]2 were substituted for the 2-desamino analogue inosine, denoted I. Comparison of the spectral characteristics of DAPI in complex with either of the polymeric nucleic acid host structures revealed a clear difference in binding geometries; the spectroscopic properties of the IC complex closely resemble those of the AT complex, in which DAPI is inserted edgewisely along the minor groove. These results are rationalised in terms of steric hindrance and decreased electronegative attraction caused by the amino group protruding into the minor groove of B-type GC tracts.Studies of complexes between DNA and a series of cobalt porphyrins and their unmetallated analogues revealed contact energy transfer from the DNA bases and binding orientation angles nearly parallel to the planes of the DNA base-pairs, indicative of intercalation, for the non-metal porphyrins. The metalloporphyrins, on the other hand, are suggested to bind in a partially melted region of DNA. This hypothesis is supported by cleavage reactions in which a break in one of the DNA strands is induced by a single activation event on the cobalt porphyrins.The DNA interaction properties for a series of quinoxaline derivatives with a positively charged side chain were examined with respect to variation of the size of the molecular heterocyclic ring system. Derivatives with three, four, and five rings were included in the investigations. All but the tricyclic compound are found to bind in an intercalative mode irrespective of DNA base sequence. For the tricyclic derivative it is suggested that the binding involves a competitive equilibrium between intercalation preferred by the ring system, and minor groove binding favoured by the side chain.The second part of this thesis focuses on the interactions between nucleic acids and two compounds with the potential of being used in the novel therapeutic antigene/antisense strategies, either by means of its own action (PNA, peptide nucleic acid) or as an antigene enhancer (9-OH-B220).The binding of the biologically active quinoxaline derivative 9-OH-B220 to double and triple helices of synthetic DNA and RNA was characterised. The drug is found to adopt an intercalative binding geometry in all complexes except when the RNA triplex serves as a host structure. In the latter case, the spectroscopic properties are indicative of a binding of the drug chromophore in the wide and shallow minor groove of the RNA triplex polymer. The drug is also found to enhance the thermal stability of each nucleic acid structure, with the DNA triplex stabilising capacity being extraordinary; when the DNA triplex is formed in a 0.1 M NaCl buffer, its triplex-to-duplex equilibrium is shifted towards higher temperature by 52.5oC upon drug association. The results indicate that 9-OH-B220 has the potential of being used both as a partner in an antigene strategy and as an antiretroviral agent.An NMR study of the base-pair breathing dynamics of hybrid duplexes formed between DNA and the nucleic acid analogue PNA revealed intriguing kinetic features of these complexes. PNA strand bases open and close with unusually high rates. The bases in the complementary DNA strands are influenced by this fast kinetics in different ways; while the DNA strand guanines are virtually unaffected, the thymine imino protons become hypersensitive to exchange catalysis. Hence, we conclude that base-pair opening is an asymmetric process in these hybrid duplexes. A model compatible with experimental data, in which a longitudinal breathing motion within the backbones is a pre-equilibrium state to that of lateral base opening, is presented and discussed. The results are of importance for efficient development of new DNA modulating drugs.
  •  
17.
  • Strömqvist, Johan, et al. (author)
  • Quenching of Triplet State Fluorophores for Studying Diffusion-Mediated Reactions in Lipid Membranes
  • 2010
  • In: Biophysical Journal. - : Elsevier BV. - 0006-3495 .- 1542-0086. ; 99:11, s. 3821-3830
  • Journal article (peer-reviewed)abstract
    • An approach to study bimolecular interactions in model lipid bilayers and biological membranes is introduced, exploiting the influence of membrane associated electron spin resonance labels on the triplet state kinetics of membrane bound fluorophores Singlet triplet state transitions within the dye Lissamine Rhodamine B (LRB) were studied when free in aqueous solutions, with LRB bound to a lipid in a liposome and in the presence of different local concentrations of the electron spin resonance label TEMPO By monitoring the triplet state kinetics via variations in the fluorescence signal, in this study using fluorescence correlation spectroscopy a strong fluorescence signal can be combined with the ability to monitor low frequency molecular interactions at timescales much longer than the fluorescence lifetimes Both in solution and in membranes the measured relative changes in the singlet triplet transitions rates were found to well reflect the expected collisional frequencies between the LRB and TEMPO molecules These collisional rates could also be monitored at local TEMPO concentrations where practically no quenching of the excited state of the fluorophores can be detected The proposed strategy is broadly applicable in terms of possible read out means types of molecular interactions that can be followed, and in what environments these interactions can be measured
  •  
18.
  • Blockhuys, Stephanie, 1983, et al. (author)
  • Defining the human copper proteome and analysis of its expression variation in cancers.
  • 2017
  • In: Metallomics. - : Oxford University Press (OUP). - 1756-5901 .- 1756-591X. ; 9:2, s. 112-123
  • Journal article (peer-reviewed)abstract
    • Copper (Cu) is essential for living organisms, and acts as a cofactor in many metabolic enzymes. To avoid the toxicity of free Cu, organisms have specific transport systems that 'chaperone' the metal to targets. Cancer progression is associated with increased cellular Cu concentrations, whereby proliferative immortality, angiogenesis and metastasis are cancer hallmarks with defined requirements for Cu. The aim of this study is to gather all known Cu-binding proteins and reveal their putative involvement in cancers using the available database resources of RNA transcript levels. Using the database along with manual curation, we identified a total of 54 Cu-binding proteins (named the human Cu proteome). Next, we retrieved RNA expression levels in cancer versus normal tissues from the TCGA database for the human Cu proteome in 18 cancer types, and noted an intricate pattern of up- and downregulation of the genes in different cancers. Hierarchical clustering in combination with bioinformatics and functional genomics analyses allowed for the prediction of cancer-related Cu-binding proteins; these were specifically inspected for the breast cancer data. Finally, for the Cu chaperone ATOX1, which is the only Cu-binding protein proposed to have transcription factor activities, we validated its predicted over-expression in patient breast cancer tissue at the protein level. This collection of Cu-binding proteins, with RNA expression patterns in different cancers, will serve as an excellent resource for mechanistic-molecular studies of Cu-dependent processes in cancer.
  •  
19.
  • Friedman, Ran, et al. (author)
  • Surfactant Effects on Amyloid Aggregation Kinetics
  • 2011
  • In: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 414, s. 303-312
  • Journal article (peer-reviewed)abstract
    • There is strong experimental evidence of the influence of surfactants (e.g., fatty acids) on the kinetics of amyloid fibril formation. However, the structures of mixed assemblies and interactions between surfactants and fibril-forming peptides are still not clear. Here, coarse-grained simulations are employed to study the aggregation kinetics of amyloidogenic peptides in the presence of amphiphilic lipids. The simulations show that the lower the fibril formation propensity of the peptides, the higher the influence of the surfactants on the peptide self-assembly kinetics. In particular, the lag phase of weakly aggregating peptides increases because of the formation of mixed oligomers, which are promoted by hydrophobic interactions and favorable entropy of mixing. A transient peak in the number of surfactants attached to the growing fibril is observed before reaching the mature fibril in some of the simulations. This peak originates from transient fibrillar defects consisting of exposed hydrophobic patches on the fibril surface, which provide a possible explanation for the temporary maximum of fluorescence observed sometimes in kinetic traces of the binding of small-molecule dyes to amyloid fibrils.
  •  
20.
  • Singh, Vivek, 1988- (author)
  • Structural investigation of human mitochondrial translation and off-target antibiotic binding
  • 2023
  • Doctoral thesis (other academic/artistic)abstract
    • Human mitochondrial translation machinery has evolved to translate 13 mitochondrial mRNAs encoding components of the oxidative phosphorylation pathway responsible for ATP production. The structural basis of human mitochondrial translation is distinct from the canonical bacterial and cytosolic translation systems. Further, mutations affecting mitochondrial protein synthesis disrupt ATP production resulting in myopathies and neurodegenerative diseases. Structural studies have identified the core components of the human mitoribosome and some of its associated translation factors but several important aspects such as the role of mito-specific proteins in translation, rRNA modifications, composition of its ultrastructure including ions, small molecule co-factors, and solvent content, remain poorly understood. Importantly, several important antibiotics that target bacterial translation also affect mitochondrial translation, thereby causing adverse effects in patients. Understanding the mechanism of off-target antibiotic binding to the mitoribosome could help in designing better antibiotics. In this work, we use electron cryo-microscopy to determine the structures of the human mitoribosome in complex with ligands: mRNA/tRNA and translation activators such as LRPPRC-SLIRP. This allows us to explore the structural basis of mitochondrial translation, identifying the roles of mito-specific protein elements in tRNA and mRNA binding and recruitment (Papers 1 and 2). We determine a 2.2 Å resolution structure of the human mitoribosome and a 2.4 Å resolution structure of the mitoribosomal small subunit in complex with the tuberculosis drug, streptomycin. Together, the structures represent the most detailed and complete models for the human mitoribosome, revealing rRNA and protein modifications; several novel small molecule cofactors: 2Fe-2S clusters, polyamines and nucleotides and mechanisms of antibiotic binding (Papers 3 and 4).
  •  
21.
  • Larsson, Daniel, 1981- (author)
  • Exploring the Molecular Dynamics of Proteins and Viruses
  • 2012
  • Doctoral thesis (other academic/artistic)abstract
    • Knowledge about structure and dynamics of the important biological macromolecules — proteins, nucleic acids, lipids and sugars — helps to understand their function. Atomic-resolution structures of macromolecules are routinely captured with X-ray crystallography and other techniques. In this thesis, simulations are used to explore the dynamics of the molecules beyond the static structures.Viruses are machines constructed from macromolecules. Crystal structures of them reveal little to no information about their genomes. In simulations of empty capsids, we observed a correlation between the spatial distribution of chloride ions in the solution and the position of RNA in crystals of satellite tobacco necrosis virus (STNV) and satellite tobacco mosaic virus (STMV). In this manner, structural features of the non-symmetric RNA could also be inferred.The capsid of STNV binds calcium ions on the icosahedral symmetry axes. The release of these ions controls the activation of the virus particle upon infection. Our simulations reproduced the swelling of the capsid upon removal of the ions and we quantified the water permeability of the capsid. The structure and dynamics of the expanded capsid suggest that the disassembly is initiated at the 3-fold symmetry axis.Several experimental methods require biomolecular samples to be injected into vacuum, such as mass-spectrometry and diffractive imaging of single particles. It is therefore important to understand how proteins and molecule-complexes respond to being aerosolized. In simulations we mimicked the dehydration process upon going from solution into the gas phase. We find that two important factors for structural stability of proteins are the temperature and the level of residual hydration. The simulations support experimental claims that membrane proteins can be protected by a lipid micelle and that a non-membrane protein could be stabilized in a reverse micelle in the gas phase. A water-layer around virus particles would impede the signal in diffractive experiments, but our calculations estimate that it should be possible to determine the orientation of the particle in individual images, which is a prerequisite for three-dimensional reconstruction.
  •  
22.
  • Sahin, Cagla, et al. (author)
  • Structural Basis for Dityrosine-Mediated Inhibition of α-Synuclein Fibrillization
  • 2022
  • In: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 144:27, s. 11949-11954
  • Journal article (peer-reviewed)abstract
    • α-Synuclein (α-Syn) is an intrinsically disordered protein which self-assembles into highly organized β-sheet structures that accumulate in plaques in brains of Parkinson’s disease patients. Oxidative stress influences α-Syn structure and self-assembly; however, the basis for this remains unclear. Here we characterize the chemical and physical effects of mild oxidation on monomeric α-Syn and its aggregation. Using a combination of biophysical methods, small-angle X-ray scattering, and native ion mobility mass spectrometry, we find that oxidation leads to formation of intramolecular dityrosine cross-linkages and a compaction of the α-Syn monomer by a factor of √2. Oxidation-induced compaction is shown to inhibit ordered self-assembly and amyloid formation by steric hindrance, suggesting an important role of mild oxidation in preventing amyloid formation.
  •  
23.
  • Andersson, Charlotta S, et al. (author)
  • A Mycobacterium tuberculosis ligand-binding Mn/Fe protein reveals a new cofactor in a remodeled R2-protein scaffold
  • 2009
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 106:14, s. 5633-8
  • Journal article (peer-reviewed)abstract
    • Chlamydia trachomatis R2c is the prototype for a recently discovered group of ribonucleotide reductase R2 proteins that use a heterodinuclear Mn/Fe redox cofactor for radical generation and storage. Here, we show that the Mycobacterium tuberculosis protein Rv0233, an R2 homologue and a potential virulence factor, contains the heterodinuclear manganese/iron-carboxylate cofactor but displays a drastic remodeling of the R2 protein scaffold into a ligand-binding oxidase. The first structural characterization of the heterodinuclear cofactor shows that the site is highly specific for manganese and iron in their respective positions despite a symmetric arrangement of coordinating residues. In this protein scaffold, the Mn/Fe cofactor supports potent 2-electron oxidations as revealed by an unprecedented tyrosine-valine crosslink in the active site. This wolf in sheep's clothing defines a distinct functional group among R2 homologues and may represent a structural and functional counterpart of the evolutionary ancestor of R2s and bacterial multicomponent monooxygenases.
  •  
24.
  • Estigoy, Colleen, et al. (author)
  • Intercalated discs : multiple proteins perform multiple functions in non-failing and failing human hearts
  • 2009
  • In: Biophysical Reviews. - : Springer Science and Business Media LLC. - 1867-2469 .- 1867-2450. ; 1:1, s. 43-49
  • Journal article (peer-reviewed)abstract
    • The intercalated disc (ICD) occupies a central position in the transmission of force, electrical continuity and chemical communication between cardiomyocytes. Changes in its structure and composition are strongly implicated in heart failure. ICD functions include: maintenance of electrical continuity across the ICD; physical links between membranes and the cytoskeleton; intercellular adhesion; maintenance of ICD structure and function; and growth. About 200 known proteins are associated with ICDs, 40% of which change in disease. We systemically reviewed cardiac immunohistochemical data on the Human Protein Atlas (HPA) web site, ExPASy protein binding data and published papers on ICDs. We identified 43 proteins not previously reported, and confirmed 37 proteins that have previously been described. In addition, 102 proteins not present on the HPA web site but were described in ICDs in the literature. We group these into clusters that demonstrate functionally interactive groups of proteins demonstrating that ICDs play a key role in cardiomyocyte function.
  •  
25.
  • Högbom, Martin, et al. (author)
  • The active form of the norovirus RNA-dependent RNA polymerase is a homodimer with cooperative activity
  • 2009
  • In: Journal of General Virology. - : Microbiology Society. - 0022-1317 .- 1465-2099. ; 90:Pt 2, s. 281-91
  • Journal article (peer-reviewed)abstract
    • Norovirus (NV) is a leading cause of gastroenteritis worldwide and a major public health concern. So far, the replication strategy of NV remains poorly understood, mainly because of the lack of a cell system to cultivate the virus. In this study, the function and the structure of a key viral enzyme of replication, the RNA-dependent RNA polymerase (RdRp, NS7), was examined. The overall structure of the NV NS7 RdRp was determined by X-ray crystallography to a 2.3 A (0.23 nm) resolution (PDB ID 2B43), displaying a right-hand fold typical of the template-dependent polynucleotide polymerases. Biochemical analysis evidenced that NV NS7 RdRp is active as a homodimer, with an apparent K(d) of 0.649 microM and a positive cooperativity (Hill coefficient n(H)=1.86). Crystals of the NV NS7 homodimer displayed lattices containing dimeric arrangements with high shape complementarity statistics. This experimental data on the structure and function of the NV RdRp may set the cornerstone for the development of polymerase inhibitors to control the infection with NV, a medically relevant pathogen.
  •  
26.
  • Jass, Jana, et al. (author)
  • Physical properties of Escherichia coli P pili measured by optical tweezers
  • 2004
  • In: Biophysical Journal. - : Elsevier BV. - 0006-3495 .- 1542-0086. ; 87:6, s. 4271-4283
  • Journal article (peer-reviewed)abstract
    • The mechanical behavior of individual P pili of uropathogenic Escherichia coli has been investigated using optical tweezers. P pili, whose main part constitutes the PapA rod, composed of approximately 10(3) PapA subunits in a helical arrangement, are distributed over the bacterial surface and mediate adhesion to host cells. They are particularly important in the pathogenesis of E. coli colonizing the upper urinary tract and kidneys. A biological model system has been established for in situ measurements of the forces that occur during mechanical stretching of pili. A mathematical model of the force-versus-elongation behavior of an individual pilus has been developed. Three elongation regions of pili were identified. In region I, P pili stretch elastically, up to a relative elongation of 16 +/- 3%. The product of elasticity modulus and area of a P pilus, EA, was assessed to 154 +/- 20 pN (n=6). In region II, the quaternary structure of the PapA rod unfolds under a constant force of 27 +/- 2 pN (n approximately 100) by a sequential breaking of the interactions between adjacent layers of PapA subunits. This unfolding can elongate the pilus up to 7 +/- 2 times. In region III, pili elongate in a nonlinear manner as a result of stretching until the bond ruptures.
  •  
27.
  • Kwak, Young-Keun, et al. (author)
  • Biological relevance of natural alpha-toxin fragments from Staphylococcus aureus
  • 2010
  • In: Journal of Membrane Biology. - : Springer Science and Business Media LLC. - 0022-2631 .- 1432-1424. ; 233:1-3, s. 93-103
  • Journal article (peer-reviewed)abstract
    • Serine proteases represent an essential part of cellular homeostasis by generating biologically active peptides. In bacteria, proteolysis serves two different roles: a major housekeeping function and the destruction of foreign or target cell proteins, thereby promoting bacterial invasion. In the process, other virulence factors such as exotoxins become affected. In Staphylococcus aureus culture supernatant, the pore-forming alpha-toxin is cleaved by the coexpressed V8 protease and aureolysin. The oligomerizing and pore-forming abilities of five such spontaneously occurring N- and C-terminal alpha-toxin fragments were studied. (3)H-marked alpha-toxin fragments bound to rabbit erythrocyte membranes but only fragments with intact C termini, missing 8, 12 and 71 amino acids from their N-terminal, formed stable oligomers. All isolated fragments induced intoxication of mouse adrenocortical Y1 cells in vitro, though the nature of membrane damage for a fragment, degraded at its C terminus, remained obscure. Only one fragment, missing the first eight N-terminal amino acids, induced irreversible intoxication of Y1 cells in the same manner as the intact toxin. Four of the isolated fragments caused swelling, indicating altered channel formation. Fragments missing 12 and 71 amino acids from the N terminus occupied the same binding sites on Y1 cell membranes, though they inhibited membrane damage caused by intact toxin. In conclusion, N-terminal deletions up to 71 amino acids are tolerated, though the kinetics of channel formation and the channel's properties are altered. In contrast, digestion at the C terminus results in nonfunctional species.
  •  
28.
  • Mamontov, Eugen, 1955 (author)
  • Homeorhesis and evolutionary properties of living systems: From ordinary differential equations to the active-particle generalized kinetics theory
  • 2006
  • In: 10th Evolutionary Biology Meeting at Marseilles, 20-22 September 2006, Marseilles, France.
  • Conference paper (peer-reviewed)abstract
    • Advanced generalized-kinetic-theory (GKT) models for biological systems are developed for populations of active (or living) particles [1]-[5]. These particles are described with both the stochastic variables common in kinetic theory (such as time, the particle random location and velocity) and the stochastic variables related to the internal states of an active particle. Evolution of these states represents biological, ecological, or social properties of the particle behavior. Paper [6] analyzes a number of the well-known statistical-mechanics approaches and shows that the active-particle GKT (APGKT) is the only treatment capable of modelling living systems. Work [2] summarizes the significance of the notion of an active particle in kinetic models. This notion draws attention to the features distinguishing living matter from nonliving matter. They are discussed by many authors (e.g., [7]-[15], [1]-[3], [6], [16]-[18]). Work [11] considers a lot of differences between living and nonliving matters, and the limitations of the modelling approaches developed for nonliving matter. Work [6] mainly focuses on the comparison of a few theoretical mechanics treatments in terms of the key living-matter properties formulated in [15]. One of the necessary properties of the evolution of living systems is homeorhesis. It is, loosely speaking, a peculiar qualitative and quantitative insensitivity of a living system to the exogenous signals acting on it. The earlier notion, homeostasis, was introduced by W. B. Cannon in 1926 who discussed the phenomenon in detail later [7]. Homeorhesis introduced by C. H. Waddington [8, p. 32] generalizes homeostasis and is well known in biology [8], [9], [12]. It is an inherent part of mathematical models for oncogeny (e.g., [16]-[18], [6, Appendix]). Homeorhesis is also discussed in [3, Section 4] in connection with APGKT. Homeorhesis is documented in ecology (e.g., [11], [13, the left column on p. 675]) where it is one of the key notions of the strong Gaia theory, a version of the Gaia theory (e.g., [14, Chapter 8]). The strong Gaia theory “states that the planet with its life, a single living system, is regulated in certain aspects by that life” [14, p. 124]. The very origin of the name “Gaia” is related to homeorhesis or homeostasis [14, p. 118]. These notions are also used in psychology and sociology. If evolution of a system is not homeorhetic, the system can not be living. Work [6, Appendix] derives a preliminary mathematical formulation of homeorhesis in terms of the simplest dynamical systems, i.e. ordinary differential equations (ODEs). The present work complements, extended, and further specify the approach of [6, Appendix]. The work comprises the two main parts. The first part develops the sufficient conditions for ODE systems to describe homeorhesis, and suggests a fairly general structure of the ODE model. It regards homeorhesis as piecewise homeostasis. The model can be specified in different ways depending on specific systems and specific purposes of the analysis. An example of the specification is also noted (the PhasTraM nonlinear reaction-diffusion model for hyperplastic oncogeny [16]-[18]). The second part of the work discusses implementation of the above homeorhesis ODE model in terms of a special version [3] of APGKT (see above). The key feature of this version is that the components of a living population need not be discrete: the subdivision into the components is described with a general, continuous-discrete probability distribution (see also [6]). This enables certain properties of living matter noted in [15]. Moreover, the corresponding APGKT model presents a system of, firstly, a generalized kinetic equation for the conditional distribution function conditioned by the internal states of the population and, secondly, Ito's stochastic differential equations for these states. This treatement employs the results on nonstationary invariant diffusion stochastic processes [19]. The second part of the work also stresses that APGKT is substantially more important for the living-matter analysis than in the case of nonliving matter. One of the reasons is certain limitations in experimental sampling of the living-system modes presented with stochastic processes. A few directions for future research are suggested as well. REFERENCES: [1] Bellomo, N., Bellouquid, A. and Delitala, M., 2004, Mathematical topics on the modelling complex multicellular systems and tumor immune cells competition, Math. Models Methods Appl. Sci., 14, 1683-1733. [2] Bellomo, N., 2006, New hot Paper Comments, Essential Science Indicators, http://www.esi-topics.com/nhp/2006 /may- 06-NicolaBellomo.html. [3] Willander, M., Mamontov, E. and Chiragwandi, Z., 2004, Modelling living fluids with the subdivision into the components in terms of probability distributions, Math. Models Methods Appl. Sci. 14, 1495-1520. [4] Bellomo, N. and Maini, P.K., 2005, Preface and the Special Issue “Multiscale Cancer Modelling-A New Frontier in Applied Mathematics”, Math. Models Methods Appl. Sci., 15, iii-viii. [5] De Angelis, E. and Delitala, M., 2006, Modelling complex systems in applied sciences: Methods and tools of the mathematical kinetic theory for active particles. Mathl Comput. Modelling, 43, 1310-1328. [6] Mamontov, E., Psiuk-Maksymowicz, K. and Koptioug, A., 2006, Stochastic mechanics in the context of the properties of living systems, Mathl Comput. Modelling, Article in Press, 13 pp. [7] Cannon, W.B., 1932, The Wisdom of the Body (New York: Norton). [8] Waddington, C.H., 1957, The Strategy of the Genes. A Discussion of Some Aspects of Theoretical Biology (London, George Allen and Unwin). [9] Waddington, C.H., 1968, Towards a theoretical biology, Nature, 218, 525-527. [10] Cotnoir, P.-A., 1981, La compétence environnementale: Une affaire d’adaptation. Séminaire en écologie behaviorale, Univeristé du Québec, Montralé. Available online at: http://pac.cam.org/culture.doc . [11] O’Neill, R.V., DeAngelis, D.L., Waide, J.B. and Allen, T.F.H., 1986, A Hierarchical Concept of Ecosystems, Princeton: Princeton Univ. Press). [12] Sauvant, D., 1992, La modélisation systémique en nutrition, Reprod. Nutr. Dev., 32, 217-230. [13] Christensen, N.L., Bartuska, A.M., Brown, J.H., Carpenter, S., D'Antonio, C., Francis, R., Franklin, J.F., MacMahon, J.A., Noss, R.F., Parsons, D.J., Peterson, C.H., Turner, M.G. and Woodmansee, R.G., 1996, The Report of the Ecological Society of America Committee on the Scientific Basis for Ecosystem Management, Ecological Applications, 6, 665-691. Available online at: http://www.esa.org/pao/esaPositions/Papers/ReportOfSBEM.php. [14] Margulis, L., 1998, Symbiotic Planet. A New Look at Evolution (Amherst: Sciencewriters). [15] Hartwell, L.H., Hopfield, J.J., Leibler, S. and Murray, A.W., 1999, From molecular to modular cell biology, Nature, 402, C47-C52. [16] Mamontov, E., Koptioug, A.V. and Psiuk-Maksymowicz, K., 2006, The minimal, phase-transition model for the cell- number maintenance by the hyperplasia-extended homeorhesis, Acta Biotheoretica, 54, 44 pp., (no. 2, May-June, accepted). [17] Psiuk-Maksymowicz, K. and Mamontov, E., 2005, The time-slices method for rapid solving the Cauchy problem for nonlinear reaction-diffusion equations in the competition of homeorhesis with genotoxically activated hyperplasia, In: European Conference on Mathematical and Theoretical Biology - ECMTB05 (July 18-22, 2005) Book of Abstracts, Vol.1 (Dresden: Center for Information Services and High Performance Computing, Dresden Univ. Technol.), p. 429 (http://www.ecmtb05.org/). [18] Psiuk-Maksymowicz, K. and Mamontov, E., 2006, The homeorhesis-based modelling and fast numerical analysis for oncogenic hyperplasia under radiation therapy, submitted. [19] Mamontov, E., 2005, Nonstationary invariant distributions and the hydrodynamic-style generalization of the Kolmogorov-forward/Fokker-Planck equation, Appl. Math. Lett. 18 (9) 976-982.
  •  
29.
  •  
30.
  • Seibert, M. Marvin, et al. (author)
  • Single mimivirus particles intercepted and imaged with an X-ray laser
  • 2011
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 470:7332, s. 78-81
  • Journal article (peer-reviewed)abstract
    • X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions(1-4). Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma(1). The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval(2). Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a noncrystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source(5). Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.
  •  
31.
  • Wedenberg, Mina, et al. (author)
  • Analytical description of the LET dependence of cell survival using the repairable-conditionally repairable damage model
  • 2010
  • In: Radiation Research. - 0033-7587 .- 1938-5404. ; 96, s. S534-S534
  • Journal article (peer-reviewed)abstract
    • In light-ion radiation therapy, both the dose and the local energy spectrum, which is often characterized with the linear energy transfer (LET), must be considered. In treatment optimization, it is advantageous to use a radiobiological model that analytically accounts for both dose and LET for the ion type of interest. With such a model the biological effect can also be estimated for dose and LET combinations for which there are no observations in the underlying experimental data. In this study, the repairable-conditionally repairable (RCR) damage model was extended by expressing its parameters as functions of LET to provide a radiobiological model that accounts for both the dose and the LET for a given ion type and cell line. This LET-parameterized RCR model was fitted to published cell survival data for HSG and V79 cells irradiated with carbon ions and for T1 cells irradiated with helium ions. To test the robustness of the model, fittings to only a subset of the data were performed. Good agreement with the cell survival data was obtained, including survival data for LET values not used for model fitting, opening up the possibility of using the model in treatment planning for light ions.
  •  
32.
  • You, Liwen, 1976- (author)
  • Detection of cleavage sites for HIV-1 protease in native proteins
  • 2006
  • In: Proceedings of LSS Computational Systems Bioinformatics Conference. - : Imperial College Press. ; , s. 249-256
  • Conference paper (peer-reviewed)abstract
    • Predicting novel cleavage sites for HIV-1 protease in non-viral proteins is a difficult task because of the scarcity of previous cleavage data on proteins in a native state. We introduce a three-level hierarchical classifier which combines information from experimentally verified short oligopeptides, secondary structure and solvent accessibility information from prediction servers to predict potential cleavage sites in non-viral proteins. The best classifier using secondary structure information on the second level classification of the hierarchical classifier is the one using logistic regression. By using this level of classification, the false positive ratio was reduced by more than half compared to the first level classifier using only the oligopeptide cleavage information. The method can be applied on other protease specificity problems too, to combine information from oligopeptides and structure from native proteins.
  •  
33.
  • Wieloch, Thomas, 1979- (author)
  • Intramolecular isotope analysis reveals plant ecophysiological signals covering multiple timescales
  • 2019
  • Doctoral thesis (other academic/artistic)abstract
    • Our societies' wellbeing relies on stable and healthy environments. However, our current lifestyles, growth-oriented economic policies and the population explosion are leading to potentially catastrophic degradation of ecosystems and progressive disruption of food chains. Hopefully, more clarity about what the future holds in store will trigger stronger efforts to find, and adopt, problem-focused coping strategies and encourage environmentally friendly lifestyles.Forecasting environmental change/destruction is complicated (inter alia) by lack of complete understanding of plant-environment interactions, particularly those involved in slow processes such as plant acclimatisation and adaptation. This stems from deficiencies in tools to analyse such slow processes. The present work aims at developing tools that can provide retrospective ecophysiological information covering timescales from days to millennia.Natural archives, such as tree-rings, preserve plant metabolites over long timescales. Analyses of intramolecular isotope abundances in plant metabolites have the potential to provide retrospective information about metabolic processes and underlying environmental controls. Thus, my colleagues and I (hereafter we) analysed intramolecular isotope patterns in tree rings to develop analytical tools that can convey information about clearly-defined plant metabolic processes over multiple timescales. Such tools might help (inter alia) to constrain plants' capacities to sequester excess amounts of anthropogenic CO2; the so-called CO2 fertilisation effect. This, in turn, might shed light on plants' sink strength for the greenhouse gas CO2, and future plant performance and growth under climate change.In the first of three studies, reported in appended papers, we analysed intramolecular 13C/12C ratios in tree-ring glucose. In six angiosperm and six gymnosperm species we found pronounced intramolecular 13C/12C differences, exceeding 10‰. These differences are transmitted into major global C pools, such as soil organic matter. Taking intramolecular 13C/12C differences into account might improve isotopic characterisation of soil metabolic processes and soil CO2 effluxes. In addition, we analysed intramolecular 13C/12C ratios in a Pinus nigra tree-ring archive spanning the period 1961 to 1995. These data revealed new ecophysiological 13C/12C signals, which can facilitate climate reconstructions and assessments of plant-environment interactions at higher resolution; thus providing higher quality information. We proposed that 13C/12C signals at glucose C-1 to C-2 derive from carbon injection into the Calvin-Benson cycle via the oxidative pentose phosphate pathway. We concluded that intramolecular 13C/12C measurements provide valuable new information about long-term metabolic dynamics for application in biogeochemistry, plant physiology, plant breeding, and paleoclimatology.In the second study, we developed a comprehensive theory on the metabolic and ecophysiological origins of 13C/12C signals at tree-ring glucose C-5 and C-6. According to this theory and theoretical implications of the first study on signals at C-1 to C-3, analysis of such intramolecular signals can provide information about several metabolic processes. At C-3, a well-known signal reflecting CO2 uptake is preserved. The glucose-6-phosphate shunt around the Calvin-Benson cycle affects 13C/12C compositions at C-1 and C-2, while the 13C/12C signals at C-5 and C-6 reflect carbon fluxes into downstream metabolism. This theoretical framework enables further experimental studies to be conducted in a hypothesis-driven manner. In conclusion, the intramolecular approach provides information about carbon allocation in plant leaves. Thus, it gives access to long-term information on key ecophysiological processes, which could not be acquired by previous approaches.The abundance of the hydrogen isotope deuterium, δD, is important for linking the water cycle with plant ecophysiology. The main factors affecting δD in plant organic matter are commonly assumed to be the δD in source water and leaf-level evaporative enrichment. Current δD models incorporate biochemical D fractionations as constants. In the third study we showed that biochemical D fractionations respond strongly to low ambient CO2 levels and low light intensity. Thus, models of δD values in plant organic matter should incorporate biochemical fractionations as variables. In addition, we found pronounced leaf-level δD differences between α-cellulose and wax n-alkanes. We explained this by metabolite-specific contributions of distinct hydrogen sources during biosynthesis.Overall, this work advances our understanding of isotope distributions and isotope fractionations in plants. It reveals the immense potential of intramolecular isotope analyses for retrospective assessment of plant metabolism and associated environmental controls.
  •  
34.
  • Allison, Timothy M., et al. (author)
  • Complementing machine learning‐based structure predictions with native mass spectrometry
  • 2022
  • In: Protein Science. - : John Wiley & Sons. - 0961-8368 .- 1469-896X. ; 31:6
  • Journal article (peer-reviewed)abstract
    • The advent of machine learning-based structure prediction algorithms such as AlphaFold2 (AF2) and RoseTTa Fold have moved the generation of accurate structural models for the entire cellular protein machinery into the reach of the scientific community. However, structure predictions of protein complexes are based on user-provided input and may require experimental validation. Mass spectrometry (MS) is a versatile, time-effective tool that provides information on post-translational modifications, ligand interactions, conformational changes, and higher-order oligomerization. Using three protein systems, we show that native MS experiments can uncover structural features of ligand interactions, homology models, and point mutations that are undetectable by AF2 alone. We conclude that machine learning can be complemented with MS to yield more accurate structural models on a small and large scale.
  •  
35.
  • Ohrvik, Helena, et al. (author)
  • Identification of New Potential Interaction Partners for Human Cytoplasmic Copper Chaperone Atox1: Roles in Gene Regulation?
  • 2015
  • In: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 16:8, s. 16728-39
  • Journal article (peer-reviewed)abstract
    • The human copper (Cu) chaperone Atox1 delivers Cu to P1B type ATPases in the Golgi network, for incorporation into essential Cu-dependent enzymes. Atox1 homologs are found in most organisms; it is a 68-residue ferredoxin-fold protein that binds Cu in a conserved surface-exposed Cys-X-X-Cys (CXXC) motif. In addition to its well-documented cytoplasmic chaperone function, in 2008 Atox1 was suggested to have functionality in the nucleus. To identify new interactions partners of Atox1, we performed a yeast two-hybrid screen with a large human placenta library of cDNA fragments using Atox1 as bait. Among 98 million fragments investigated, 25 proteins were found to be confident interaction partners. Nine of these were uncharacterized proteins, and the remaining 16 proteins were analyzed by bioinformatics with respect to cell localization, tissue distribution, function, sequence motifs, three-dimensional structures and interaction networks. Several of the hits were eukaryotic-specific proteins interacting with DNA or RNA implying that Atox1 may act as a modulator of gene regulation. Notably, because many of the identified proteins contain CXXC motifs, similarly to the Cu transport reactions, interactions between these and Atox1 may be mediated by Cu.
  •  
36.
  • Ariöz, Candan, 1983- (author)
  • Exploring the Interplay of Lipids and Membrane Proteins
  • 2014
  • Doctoral thesis (other academic/artistic)abstract
    • The interplay between lipids and membrane proteins is known to affect membrane protein topology and thus have significant effect (control) on their functions. In this PhD thesis, the influence of lipids on the membrane protein function was studied using three different membrane protein models.A monotopic membrane protein, monoglucosyldiacylglyecerol synthase (MGS) from Acholeplasma laidlawii is known to induce intracellular vesicles when expressed in Escherichia coli. The mechanism leading to this unusual phenomenon was investigated by various biochemical and biophysical techniques. The results indicated a doubling of lipid synthesis in the cell, which was triggered by the selective binding of MGS to anionic lipids. Multivariate data analysis revealed a good correlation with MGS production. Furthermore, preferential anionic lipid sequestering by MGS was shown to induce a different fatty acid modeling of E. coli membranes. The roles of specific lipid binding and the probable mechanism leading to intracellular vesicle formation were also investigated.As a second model, a MGS homolog from Synechocystis sp. PCC6803 was selected. MgdA is an integral membrane protein with multiple transmembrane helices and a unique membrane topology. The influence of different type of lipids on MgdA activity was tested with different membrane fractions of Synechocystis. Results indicated a very distinct profile compared to Acholeplasma laidlawii MGS. SQDG, an anionic lipid was found to be the species of the membrane that increased the MgdA activity 7-fold whereas two other lipids (PG and PE) had only minor effects on MgdA. Additionally, a working model of MgdA for the biosynthesis and flow of sugar lipids between Synechocystis membranes was proposed.The last model system was another integral membrane protein with a distinct structure but also a different function. The envelope stress sensor, CpxA and its interaction with E. coli membranes were studied. CpxA autophosphorylation activity was found to be positively regulated by phosphatidylethanolamine and negatively by anionic lipids. In contrast, phosphorylation of CpxR by CpxA revealed to be increased with PG but inhibited by CL. Non-bilayer lipids had a negative impact on CpxA phosphotransfer activity.Taken together, these studies provide a better understanding of the significance of the interplay of lipids and model membrane proteins discussed here.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  • Karjalainen, Eeva-Liisa, 1980- (author)
  • The choreography of protein vibrations : Improved methods of observing and simulating the infrared absorption of proteins
  • 2011
  • Doctoral thesis (other academic/artistic)abstract
    • The work presented in this thesis has striven toward improving the capability to study proteins using infrared (IR) spectroscopy. This includes development of new and improved experimental and theoretical methods to selectively observe and simulate protein vibrations.A new experimental method of utilising adenylate kinase and apyrase as helper enzymes to alter the nucleotide composition and to perform isotope exchange in IR samples was developed. This method enhances the capability of IR spectroscopy by enabling increased duration of measurement time, making experiments more repeatable and allowing investigation of partial reactions and selected frequencies otherwise difficult to observe. The helper enzyme mediated isotope exchange allowed selective observation of the vibrations of the catalytically important phosphate group in a nucleotide dependent protein such as the sarcoplasmic reticulum Ca2+-ATPase. This important and representative member of P-type ATPases was further investigated in a different study, where a pathway for the protons countertransported in the Ca2+-ATPase reaction cycle was proposed based on theoretical considerations. The transport mechanism was suggested to involve separate pathways for the ions and the protons.Simulation of the IR amide I band of proteins enables and supports structure-spectra correlations. The characteristic stacking of beta-sheets observed in amyloid structures was shown to induce a band shift in IR spectra based on simulations of the amide I band. The challenge of simulating protein spectra in aqueous medium was also addressed in a novel approach where optimisation of simulated spectra of a large set of protein structures to their corresponding experimental spectra was performed. Thereby, parameters describing the most important effects on the amide I band for proteins could be determined. The protein spectra predicted using the optimised parameters were found to be well in agreement with experiment.
  •  
41.
  • Lindholm, Ljubica, et al. (author)
  • Effect of lipid bilayer properties on the photocycle of green proteorhodopsin
  • 2015
  • In: Biochimica et Biophysica Acta - Bioenergetics. - : Elsevier BV. - 0005-2728 .- 1879-2650. ; 1847:8, s. 698-708
  • Journal article (peer-reviewed)abstract
    • The significance of specific lipids for proton pumping by the bacterial rhodopsin proteorhodopsin (pR) was studied. To this end, it was examined whether pR preferentially binds certain lipids and whether molecular properties of the lipid environment affect the photocycle. pR's photocyde was followed by microsecond flash-photolysis in the visible spectral range. It was fastest in phosphatidylcholine liposomes (soy bean lipid), intermediate in 3-[(3-cholamidopropyl) dimethylammonio] propanesulfonate (CHAPS): 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bicelles and in Triton X-100, and slowest when pR was solubilized in CHAPS. In bicelles with different lipid compositions, the nature of the head groups, the unsaturation level and the fatty acid chain length had small effects on the photocycle. The specific affinity of pR for lipids of the expression host Eschetichia coil was investigated by an optimized method of lipid isolation from purified membrane protein using two different concentrations of the detergent N-dodecyl-beta-D-maltoside (DDM). We found that 11 lipids were copurified per pR molecule at 0.1% DDM, whereas essentially all lipids were stripped off from pR by 1% DDM. The relative amounts of copurifled phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin did not correlate with the molar percentages normally present in E. coil cells. The results indicate a predominance of phosphatidylethanolamine species in the lipid annulus around recombinant pR that are less polar than the dominant species in the cell membrane of the expression host E. coli.
  •  
42.
  • Matson Dzebo, Maria, 1985, et al. (author)
  • Extended functional repertoire for human copper chaperones
  • 2016
  • In: Biomolecular Concepts. - : Walter de Gruyter GmbH. - 1868-5021 .- 1868-503X. ; 7:1, s. 29-39
  • Journal article (peer-reviewed)abstract
    • Copper (Cu) ions are cofactors in many essential enzymes. As free Cu ions are toxic, most organisms have highly specialized Cu transport systems involving dedicated proteins. The human cytoplasmic Cu chaperone Atox1 delivers Cu to P1B-type ATPases in the Golgi network, for incorporation into Cu-dependent enzymes following the secretory path. Atox1 homologs are found in most organisms; it is a 68-residue ferredoxin-fold protein that binds Cu in a conserved surface-exposed CXXC motif. In addition to Atox1, the human cytoplasm also contains Cu chaperones for loading of superoxide dismutase 1 (i.e. CCS) and cytochrome c oxidase in mitochondria (i.e. Cox17). Many mechanistic aspects have been resolved with respect to how Cu ions are moved between these proteins. In addition to the primary cytoplasmic Cu chaperone function, all three cytoplasmic chaperones have been reported to have other interaction partners that are involved in signaling pathways that modulate cell growth and development. These new discoveries imply that humans have evolved a highly sophisticated network of control mechanisms that connect Cu transport with cell regulatory processes. This knowledge may eventually be exploited for future drug developments towards diseases such as cancer and neurodegenerative disorders.
  •  
43.
  •  
44.
  • Sridhara, Sagar, 1989 (author)
  • Multiple structural flavors of RNase P in precursor tRNA processing.
  • 2024
  • In: Wiley interdisciplinary reviews. RNA. - 1757-7012. ; 15:2
  • Journal article (peer-reviewed)abstract
    • The precursor transfer RNAs (pre-tRNAs) require extensive processing to generate mature tRNAs possessing proper fold, structural stability, and functionality required to sustain cellular viability. The road to tRNA maturation follows an ordered process: 5'-processing, 3'-processing, modifications at specific sites, if any, and 3'-CCA addition before aminoacylation and recruitment to the cellular protein synthesis machinery. Ribonuclease P (RNase P) is a universally conserved endonuclease in all domains of life, performing the hydrolysis of pre-tRNA sequences at the 5' end by the removal of phosphodiester linkages between nucleotides at position -1 and +1. Except for an archaeal species: Nanoarchaeum equitans where tRNAs are transcribed from leaderless-position +1, RNase P is indispensable for life and displays fundamental variations in terms of enzyme subunit composition, mechanism of substrate recognition and active site architecture, utilizing in all cases a two metal ion-mediated conserved catalytic reaction. While the canonical RNA-based ribonucleoprotein RNase P has been well-known to occur in bacteria, archaea, and eukaryotes, the occurrence of RNA-free protein-only RNase P in eukaryotes and RNA-free homologs of Aquifex RNase P in prokaryotes has been discovered more recently. This review aims to provide a comprehensive overview of structural diversity displayed by various RNA-based and RNA-free RNase P holoenzymes towards harnessing critical RNA-protein and protein-protein interactions in achieving conserved pre-tRNA processing functionality. Furthermore, alternate roles and functional interchangeability of RNase P are discussed in the context of its employability in several clinical and biotechnological applications. This article is categorized under: RNA Processing > tRNA Processing RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
  •  
45.
  • Unnerståle, Sofia (author)
  • NMR Investigations of Peptide-Membrane Interactions, Modulation of Peptide-Lipid Interaction as a Switch in Signaling across the Lipid Bilayer
  • 2010
  • Licentiate thesis (other academic/artistic)abstract
    • The complexity of multi cellular organisms demands systems that facilitate communicationbetween cells. The neurons in our brains for instance are specialized in this cell-cellcommunication. The flow of ions, through their different ion channels, across the membrane, isresponsible for almost all of the communication between neurons in the brain by changing theneurons membrane potentials. Voltage-gated ion channels open when a certain thresholdpotential is reached. This change in membrane potential is detected by voltage-sensors in the ionchannels. In this licentiate thesis the Homo sapiens voltage- and calcium-gated BK potassiumchannel (HsapBK) has been studied. The NMR solution structure of the voltage-sensor ofHsapBK was solved to shed light upon the voltage-gating in these channels. Structures of othervoltage-gated potassium channels (Kv) have been determined by other groups, enablingcomparison among different types of Kv channels. Interestingly, the peptide-lipid interactions ofthe voltage-sensor in HsapBK are crucial for its mechanism of action.Uni cellular organisms need to sense their environment too, to be able to move towardsmore favorable areas and from less favorable ones, and to adapt their gene profiles to currentcircumstances. This is accomplished by the two-component system, comprising a sensor proteinand a response regulator. The sensor protein transfers signals across the membrane to thecytoplasm. Many sensor proteins contain a HAMP domain close to the membrane that isinvolved in transmitting the signal. The mechanism of this transfer is not yet revealed. Ourstudies show that HAMP domains can be divided into two groups based on the membraneinteraction of their AS1 segments. Further, these two groups are suggested to work by differentmechanisms; one membrane-dependent and one membrane-independent mechanism.Both the voltage-gating mechanism and the signal transduction carried out by HAMPdomains in the membrane-dependent group, demand peptide-lipid interactions that can be readilymodulated. This modulation enables movement of peptides within membranes or within thelipid-water interface. These conditions make these peptides especially suitable for NMR studies.
  •  
46.
  • Vajda, Vivi, et al. (author)
  • Geochemical Fingerprints of Ginkgoales Across the Triassic-Jurassic Boundary of Greenland
  • 2021
  • In: International journal of plant sciences. - Chicago : University of Chicago Press. - 1058-5893 .- 1537-5315. ; 182:7, s. 649-662
  • Journal article (peer-reviewed)abstract
    • Premise of research. Geochemical fingerprinting of fossil plants is a relatively new research field complementing morphological analyses and providing information for paleoenvironmental interpretations. Ginkgoales contains a single extant species but was diverse through the Mesozoic and is an excellent target for biochemical analyses.Methodology. Cuticles derived from fresh and fallen autumn leaves of extant Ginkgo biloba and seven fossil gink- goalean leaf taxa, one seed fern taxon, and two taxa with bennettitalean affinity were analyzed by infrared (IR) microspec- troscopy at the D7 beamline in the MAX IV synchrotron laboratory, Sweden. The fossil material derives from Triassic and Jurassic successions of Greenland. Spectral data sets were compared and evaluated by hierarchical cluster analysis (HCA) and principal component analysis performed on vector-normalized, first-derivative IR absorption spectra.Pivotal results. The IR absorption spectra of the fossil leaves all reveal signatures that clearly indicate the pres- ence of organic compounds. Spectra of the extant G. biloba leaves reveal the presence of aliphatic chains, aromatic and ester carbonyl functional groups from polymer cutin and other waxy compounds, and polysaccharides. Inter- estingly, both the extant autumn leaves and the fossil specimens reveal the presence of carboxyl/ketone molecules, suggesting that chemical alterations during the initial stages of decomposition are preserved through fossilization. Two major subclusters were identified through HCA of the fossil spectra.Conclusions. Consistent chemical IR signatures, specific for each fossil taxon are present in cuticles, and suf- ficient molecular content is preserved in key regions to reflect the plants’ original chemical signatures. The alter- ations of the organic compounds are initiated as soon as the leaves are shed, with loss of proteins and increased ester and carboxyl/ketone compound production in the fallen leaves. We further show that the groupings of taxa reflect a combination of phylogeny and environmental conditions related to the end-Triassic event.
  •  
47.
  • Wu, Fei, 1993- (author)
  • Exploring Membrane Proteins within the Inner Mitochondrial and Endoplasmic Reticulum Membranes : Mitochondrial respiratory complexes and ER-localized Shr3
  • 2024
  • Doctoral thesis (other academic/artistic)abstract
    • Membrane proteins play important roles in various life processes, for example, those in the inner mitochondrial membrane (IMM), endoplasmic reticulum (ER) membrane, and plasma membrane (PM). Oxidative phosphorylation complexes, densely packed in the IMM are crucial for energy transduction in eukaryotes. We determined three entire II2III2 IV2 supercomplex (SC) structures with 114 lipids at 2.1-2.4 Å resolution in Perkinsus marinus (P. marinus). The structures show a complete electron transfer pathway from complex II (CII) to complex IV (CIV). These architectures also reveal rotation states of the iron sulfur protein (ISP) in complex III (CIII), from one of which we observed two novel proteins that might impair the electron transfer. We also studied how the salt concentration and detergent affect the electron transfer. We determined the SC III2 IV-cytochrome c (cyt. c) cryo-EM structure at 20 mM salt concentration condition. Together with kinetic study, these data implicate that multiple cyt. c are involved in electron transfer between CIII and CIV. Our kinetic studies of CIV also indicate a native ligand bound near its K proton pathway which could be removed by detergent, leading to an increase in electron transfer rate and the activity of the enzyme. Most biogenesis of integral membrane proteins in eukaryotes is done in ER, such as the amino acid permeases (AAP), which function as amino acid transporters in the PM. Its synthesis and functional folding in Saccharomyces cerevisiae (S. cerevisiae) requires an ER membrane-localized chaperone, Shr3. We utilized a yeast growth-based genetic assay, in conjunction with a split-ubiquitin yeast two-hybrid assay, to demonstrate the selective interaction between Shr3 and nested C-terminal AAP truncations. This interaction exhibited a distinct pattern, wherein it gradually intensified and then weakened as more transmembrane helices folded. The work presented in this thesis contributions to an increased understanding of the organization and function of SCs, the effects of protein subunits, salt concentrations, and detergents on electron transfer, as well as the mechanism of Shr3 on AAP folding in the ER membrane. Together, these works have shed light on the understanding of the structure and function of several membrane proteins.
  •  
48.
  • Öhrström, Maria, 1971- (author)
  • Biophysical investigations of ribonucleotide reductase : Activation and inhibition mechanisms
  • 2010
  • Doctoral thesis (other academic/artistic)abstract
    • Ribonucleotide reductase (RNR) is the enzyme responsible for de novo synthesis of deoxyribonucleotides, needed for both synthesis and repair of cellular DNA. The RNRs known so far are divided into three distinct classes; I, II and III. The conventional class I enzyme is composed of two separate subunits. The larger R1 subunit contains the active site, whereas the smaller R2 subunit contains a system specialized in forming, transporting and stabilizing a tyrosyl free radical. Recently a new class Ic RNR was discovered in the bacterium Chlamydia trachomatis. It differs from the conventional class Ia and b RNRs in that it has a phenylalanine at the otherwise conserved tyrosyl radical harboring residue in its R2 subunit. Additionally the metal cluster shows some unusual aspects, of which the most striking perhaps is that the most red-ox active form is a mixed Mn-Fe cluster, instead of the normal Fe-Fe counterpart. In this work several biochemical and biophysical methods were used to study activation and inhibition mechanisms in RNR from various class I species. The results from studying the oxygen activation confirm the role of the iron ligand E238 as a key residue for controlling the outcome of the reaction in E. coli protein R2. The finding of a stable sulfinyl radical after reconstitution of the R2 Y177F/I263C variant from mouse indicates that sulfinyl radicals may possibly be considered as stabilized forms of very short-lived thiyl radicals, proposed to be important in the radical chemistry of RNR. The investigation of the role of the proposed radical transfer pathway during chemical reduction of the iron/radical center shows that no specific pathway is required for the reduction of protein R2 from mouse. The results from inhibition studies of C. trachomatis demonstrate that the same mechanism of inhibition functions on this new class Ic RNR, however less efficiently than in class Ia and b.  
  •  
49.
  • Landreh, Michael, et al. (author)
  • Integrating mass spectrometry with MD simulations reveals the role of lipids in Na+/H+ antiporters
  • 2017
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • Na+/H+ antiporters are found in all kingdoms of life and exhibit catalysis rates that are among the fastest of all known secondary-active transporters. Here we combine ion mobility mass spectrometry and molecular dynamics simulations to study the conformational stability and lipid-binding properties of the Na+/H+ exchanger NapA from Thermus thermophilus and compare this to the prototypical antiporter NhaA from Escherichia coli and the human homologue NHA2. We find that NapA and NHA2, but not NhaA, form stable dimers and do not selectively retain membrane lipids. By comparing wild-type NapA with engineered variants, we show that the unfolding of the protein in the gas phase involves the disruption of inter-domain contacts. Lipids around the domain interface protect the native fold in the gas phase by mediating contacts between the mobile protein segments. We speculate that elevator-type antiporters such as NapA, and likely NHA2, use a subset of annular lipids as structural support to facilitate large-scale conformational changes within the membrane.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 2701
Type of publication
journal article (1961)
doctoral thesis (274)
conference paper (155)
other publication (112)
research review (86)
book chapter (56)
show more...
licentiate thesis (43)
reports (5)
book (4)
editorial collection (3)
artistic work (3)
patent (1)
review (1)
show less...
Type of content
peer-reviewed (1961)
other academic/artistic (736)
pop. science, debate, etc. (4)
Author/Editor
Westerlund, Fredrik, ... (76)
Lindahl, Erik, 1972- (52)
Andersson, Magnus (50)
Lindahl, Erik (47)
Höök, Fredrik, 1966 (46)
Wittung-Stafshede, P ... (46)
show more...
Irbäck, Anders (46)
Månsson, Alf (45)
Ambjörnsson, Tobias (44)
Linse, Sara (39)
Friedman, Ran (38)
Widengren, Jerker (38)
Gräslund, Astrid (37)
Delemotte, Lucie (36)
Brismar, Hjalmar (29)
Zhdanov, Vladimir, 1 ... (28)
Howard, Rebecca J. (27)
Jönsson, Henrik (26)
Mäler, Lena (26)
Kesarimangalam, Srir ... (26)
Maia, Filipe R. N. C ... (25)
Sparr, Emma (24)
Hess, Berk (23)
Persson, Mikael, 195 ... (23)
Hajdu, Janos (22)
Goksör, Mattias, 197 ... (21)
Nordén, Bengt, 1945 (21)
Fritzsche, Joachim, ... (21)
Timneanu, Nicusor (20)
Adiels, Caroline B., ... (19)
Elf, Johan (19)
Gröbner, Gerhard (19)
Danielsson, Jens (18)
Styring, Stenbjörn (18)
Mamedov, Fikret (18)
Nyberg, Lena, 1979 (18)
Svenda, Martin (18)
van Der Spoel, David (17)
Esbjörner Winters, E ... (17)
Testa, Ilaria (17)
Peterson, Carsten (17)
Mohanty, Sandipan (17)
Dahlin, Andreas, 198 ... (16)
Caleman, Carl (16)
Lincoln, Per, 1958 (16)
Söderberg, Bo (16)
Nylander, Tommy (15)
Wilhelmsson, Marcus, ... (15)
Tegenfeldt, Jonas O. (15)
Barty, Anton (15)
show less...
University
Chalmers University of Technology (591)
Lund University (572)
Royal Institute of Technology (509)
Uppsala University (391)
Stockholm University (316)
University of Gothenburg (262)
show more...
Umeå University (260)
Linköping University (132)
Karolinska Institutet (130)
Linnaeus University (103)
Swedish University of Agricultural Sciences (50)
Örebro University (25)
RISE (24)
Malmö University (21)
Södertörn University (13)
The Swedish School of Sport and Health Sciences (8)
Luleå University of Technology (6)
Halmstad University (4)
Mid Sweden University (4)
University of Borås (4)
Kristianstad University College (2)
Mälardalen University (2)
University of Skövde (2)
Karlstad University (2)
Swedish Museum of Natural History (1)
show less...
Language
English (2697)
Swedish (2)
German (1)
Chinese (1)
Research subject (UKÄ/SCB)
Natural sciences (2701)
Medical and Health Sciences (337)
Engineering and Technology (204)
Agricultural Sciences (8)
Humanities (6)
Social Sciences (4)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view