SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(NATURVETENSKAP Fysik Fusion, plasma och rymdfysik) "

Sökning: AMNE:(NATURVETENSKAP Fysik Fusion, plasma och rymdfysik)

  • Resultat 1-50 av 4310
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ekeberg, Jonas, 1978- (författare)
  • Solitary waves and enhanced incoherent scatter ion lines
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis addresses solitary waves and their significance for auroral particle acceleration, coronal heating and incoherent scatter radar spectra. Solitary waves are formed due to a balance of nonlinear and dispersive effects. There are several nonlinearities present in ideal magnetohydrodynamics (MHD) and dispersion can be introduced by including theHall termin the generalised Ohm’s law. The resulting system of equations comprise the classical ideal MHD waves, whistlers, drift waves and solitarywave solutions. The latter reside in distinct regions of the phase space spanned by the speed and the angle (to the magnetic field) of the propagating wave. Within each region, qualitatively similar solitary structures are found. In the limit of neglected electron intertia, the solitary wave solutions are confined to two regions of slow and fast waves, respectively. The slow (fast) structures are associated with density compressions (rarefactions) and positive (negative) electric potentials. Such negative potentials are shown to accelerate electrons in the auroral region (solar corona) to tens (hundreds) of keV. The positive electric potentials could accelerate solar wind ions to velocities of 300–800 km/s. The structure widths perpendicular to themagnetic field are in the Earth’s magnetosphere (solar corona) of the order of 1–100 km (m). This thesis also addresses a type of incoherent scatter radar spectra, where the ion line exhibits a spectrally uniform power enhancement with the up- and downshifted shoulder and the spectral region in between enhanced simultaneously and equally. The power enhancements are one order of magnitude above the thermal level and are often localised to an altitude range of less than 20 km at or close to the ionospheric F region peak. The observations are well-described by a model of ion-acoustic solitary waves propagating transversely across the radar beam. Two cases of localised ion line enhancements are shown to occur in conjunction with auroral arcs drifting through the radar beam. The arc passages are associated with large gradients in ion temperature, which are shown to generate sufficiently high velocity shears to give rise to growing Kelvin-Helmholtz (K-H) instabilities. The observed ion line enhancements are interpreted in the light of the low-frequency turbulence associated with these instabilities.
  •  
2.
  • Stenflo, Lennart, et al. (författare)
  • Nonlinear beam generated plasma waves as a source for enhanced plasma and ion acoustic lines
  • 2011
  • Ingår i: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674. ; 18:15, s. 052107-1-052107-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations by, for instance, the EISCAT Svalbard Radar (ESR) demonstrate that the symmetry of the naturally occurring ion line in the polar ionosphere can be broken by an enhanced, nonthermal, level of fluctuations (naturally enhanced ion-acoustic lines, NEIALs). It was in many cases found that the entire ion spectrum can be distorted, also with the appearance of a third line, corresponding to a propagation velocity significantly slower than the ion acoustic sound speed. It has been argued that selective decay of beam excited primary Langmuir waves can explain some phenomena similar to those observed. We consider a related model, suggesting that a primary nonlinear process can be an oscillating two-stream instability, generating a forced low frequency mode that does not obey any ion sound dispersion relation. At later times, the decay of Langmuir waves can give rise also to enhanced asymmetric ion lines. The analysis is based on numerical results, where the initial Langmuir waves are excited by a cold dilute electron beam. By this numerical approach, we can detect fine details of the physical processes, in particular, demonstrate a strong space-time intermittency of the electron waves in agreement with observations. Our code solves the full Vlasov equation for electrons and ions, with the dynamics coupled through the electrostatic field derived from Poisson's equation. The analysis distinguishes the dynamics of the background and beam electrons. This distinction simplifies the analysis for the formulation of the weakly nonlinear analytical model for the oscillating two-stream instability. The results have general applications beyond their relevance for the ionospheric observations.
  •  
3.
  • Asp, Elina (författare)
  • Drift-Type Waves in Rotating Tokamak Plasma
  • 2003
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The concept of energy production through the fusion of two light nuclei has been studied since the 1950’s. One of the major problems that fusion scientists have encountered is the confinement of the hot ionised gas, i.e. the plasma, in which the fusion process takes place. The most common way to contain the plasma is by using at magnetic field configuration, in which the plasma takes a doughnut-like shape. Experimental devices of this kind are referred to as tokamaks. For the fusion process to proceed at an adequate rate, the temperature of the plasma must exceed 100,000,000C. Such a high temperature forces the plasma out of thermodynamical equilibrium which plasma tries to regain by exciting a number of turbulent processes. After successfully quenching the lager scale magnetohydrodynamic turbulence that may instantly disrupt the plasma, a smaller scale turbulence revealed itself. As this smaller scale turbulence behaved contrary to the common theory at the time, it was referred to as anomalous. This kind of turbulence does not directly threaten existents of the plasma, but it allows for a leakage of heat and particles which inhibits the fusion reactions. It is thus essential to understand the origin of anomalous turbulence, the transport it generates and most importantly, how to reduce it. Today it is believed that anomalous transport is due to drift-type waves driven by temperature and density inhomogeneities and the theoretical treatment of these waves is the topic of this thesis.The first part of the thesis contains a rigorous analytical two-fluid treatment of drift waves driven solely by density inhomogeneities. Effects of the toroidal magnetic field configuration, the Landau resonance, a peaked diamagnetic frequency and a sheared rotation of the plasma have been taken into account. These effects either stabilise or destabilise the drift waves and to determine the net result on the drift waves requires careful analysis. To this end, dispersion relations have been obtained in various limits to determine when to expect the different effects to be dominant. The main result of this part is that with a large enough rotational shear, the drift waves will be quenched.In the second part we focus on temperature effects and thus treat reactive drift waves, specifically ion temperature gradient and trapped electron modes. In fusion plasmas the α-particles, created as a by-product of the fusion process, transfer the better part of their energy to the electrons and hence the electron temperature is expected to exceed the ion temperature. In most experiments until today, the ion temperature is greater than the electron temperature and this have been proven to improve the plasma confinement. To predict the performance of future fusion plasmas, where the fusion process is ongoing, a comprehensive study of hot-electron plasmas and external heating effects have been carried out. Especially the stiffness (heat flux vs. inverse temperature length scale) of the plasma has been examined. This work was performed by simulations done with the JETTO code utilising the Weiland model. The outcome of these simulations shows that the plasma response to strong heating is very stiff and that the plasma energy confinement time seems to vary little in the hot-electron mode.
  •  
4.
  • Petersson, Per, et al. (författare)
  • Mapping of hydrogen isotopes with a scanning nuclear microprobe
  • 2008
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section B. - : Elsevier BV. - 0168-583X .- 1872-9584. ; 266:10, s. 2429-2432
  • Tidskriftsartikel (refereegranskat)abstract
    • Elastic recoil detection analysis using heavy ions with a scanning nuclear microprobe was applied to determine the content of hydrogen isotopes in carbon material facing fusion plasma in the JET fusion reactor. The hydrogen and deuterium concentrations in re-deposited material were obtained by mapping a cross sectional cut of a wall sample. De-trapping and hydrogen release caused by the primary ion beam were investigated. For both the deuterium and hydrogen concentration a drop of similar to 75% was observed from an extrapolated initial value to a final steady state region. A procedure was used to determine the initial concentration. In this way a mapping of the initial deuterium concentration could be obtained.
  •  
5.
  • Sjöstrand, Henrik, 1978- (författare)
  • Neutron Spectroscopy : Instrumentation and Methods for Fusion Plasmas
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • When the heavy hydrogen isotopes deuterium (D) and tritium (T) undergo nuclear fusion large amounts of energy are released. At the Joint European Torus (JET) research is performed on how to harvest this energy. Two of the most important fusion reactions, d+d→3He+n (En = 2.5 MeV) and d+t→4He+n (En = 14 MeV), produce neutrons. This thesis investigates how measurements of these neutrons can provide information on the fusion performance. The Magnetic Proton Recoil (MPR) neutron spectrometer has operated at JET since 1996. The spectrometer was designed to provide measurements on the 14 MeV neutron emission in DT operation, thereby conveying information on the state of the fuel ions. However, a majority of today’s fusion experiments are performed with pure D fuel. Under such conditions, the measurements with the MPR were severely hampered due to interfering background. This prompted an upgrade of the instrument. The upgrade, described in this thesis, included a new focal plane detector, a phoswich scintillator array, and new data acquisition electronics, based on transient recorder cards. This combination allows for pulse shape discrimination techniques to be applied and a signal to background of 5/1 has been achieved in measurements of the 2.5-MeV neutrons in D experiments. The upgrade also includes a new control and monitoring system, which enables the monitoring and correction of gain variations in the spectrometer’s photo multiplier tubes. Such corrections are vital for obtaining good data quality. In addition, this thesis describes a new method for determining the total neutron yield and hence the fusion power by using a MPR spectrometer in combination with a neutron emission profile monitor. The system has been operated at JET both during DT and D experiments. It is found that the systematic uncertainties are considerably lower (≈6 %) than for traditional systems. For a dedicated system designed for the next generation fusion experiments, i.e, ITER, uncertainties of 4 % could be attained. Neutron spectroscopy can also be an important tool for determining the neutron emission from residual tritium in D plasmas. This information is combined with other measurements at JET in order to determine the confinement of the 1 MeV tritons from the d+d→t+p reactions.
  •  
6.
  • Giacomelli, L., et al. (författare)
  • Neutron emission spectroscopy results for internal transport barrier and mode conversion ion cyclotron resonance heating experiments at JET
  • 2008
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 79:10, s. 10E514-
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of ion cyclotron resonance heating (ICRH) on ((3)He)D plasmas at JET was studied with the time of flight optimized rate (TOFOR) spectrometer dedicated to 2.5 MeV dd neutron measurements. In internal transport barrier (ITB) plasma experiments with large (3)He concentrations (X((3)He)>15%) an increase in neutron yield was observed after the ITB disappeared but with the auxiliary neutral beam injection and ICRH power still applied. The analysis of the TOFOR data revealed the formation of a high energy (fast) D population in this regime. The results were compared to other mode conversion experiments with similar X((3)He) but slightly different heating conditions. In this study we report on the high energy neutron tails originating from the fast D ions and their correlation with X((3)He) and discuss the light it can shed on ICRH-plasma power coupling mechanisms.
  •  
7.
  • Olson, Jonas, et al. (författare)
  • On the interpretation of Langmuir probe data inside a spacecraft sheath
  • 2010
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 81:10, s. 105106-1-105106-8
  • Tidskriftsartikel (refereegranskat)abstract
    • If a Langmuir probe is located inside the sheath of a negatively charged spacecraft, there is a risk that the probe characteristic is modified compared to that of a free probe in the ambient plasma. We have studied this probe-in-spacecraft-sheath problem in the parameter range of a small Langmuir probe (with radius r(LP)<U-1, there is first a transition region II in applied potential, U-1
  •  
8.
  • Forsberg, Mats, 1978- (författare)
  • Gravitational perturbations in plasmas and cosmology
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Gravitational perturbations can be in the form of scalars, vectors or tensors. This thesis focuses on the evolution of scalar perturbations in cosmology, and interactions between tensor perturbations, in the form of gravitational waves, and plasma waves. The gravitational waves studied in this thesis are assumed to have small amplitudes and wavelengths much shorter than the background length scale, allowing for the assumption of a flat background metric. Interactions between gravitational waves and plasmas are described by the Einstein-Maxwell-Vlasov, or the Einstein-Maxwell-fluid equations, depending on the level of detail required. Using such models, linear wave excitation of various waves by gravitational waves in astrophysical plasmas are studied, with a focus on resonance effects. Furthermore, the influence of strong magnetic field quantum electrodynamics, leading to detuning of the gravitational wave-electromagnetic wave resonances, is considered. Various nonlinear phenomena, including parametric excitation and wave steepening are also studied in different astrophysical settings. In cosmology the evolution of gravitational perturbations are of interest in processes such as structure formation and generation of large scale magnetic fields. Here, the growth of density perturbations in Kantowski-Sachs cosmologies with positive cosmological constant is studied.
  •  
9.
  • Weisen, H., et al. (författare)
  • Isotope dependence of energy, momentum and particle confinement in tokamaks
  • 2020
  • Ingår i: Journal of Plasma Physics. - : Cambridge University Press. - 0022-3778 .- 1469-7807. ; 86:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The isotope dependence of plasma transport will have a significant impact on the performance of future D-T experiments in JET and ITER and eventually on the fusion gain and economics of future reactors. In preparation for future D-T operation on JET, dedicated experiments and comprehensive transport analyses were performed in H, D and H-D mixed plasmas. The analysis of the data has demonstrated an unexpectedly strong and favourable dependence of the global confinement of energy, momentum and particles in ELMy H-mode plasmas on the atomic mass of the main ion species, the energy confinement time scaling as tau(E) similar to A(0.5) (Maggi et al., Plasma Phys. Control. Fusion, vol. 60, 2018, 014045; JET Team, Nucl. Fusion, vol. 39, 1999, pp. 1227-1244), i.e. opposite to the expectations based only on local gyro-Bohm (GB) scaling, tau(E) similar to A(-0.5), and stronger than in the commonly used H-mode scaling for the energy confinement (Saibene et al., Nucl. Fusion, vol. 39, 1999, 1133; ITER Physics Basis, Nucl. Fusion, vol. 39, 1999, 2175). The scaling of momentum transport and particle confinement with isotope mass is very similar to that of energy transport. Nonlinear local GENE gyrokinetic analysis shows that the observed anti-GB heat flux is accounted for if collisions, ExB shear and plasma dilution with low-Z impurities (Be-9) are included in the analysis (E and B are, respectively the electric and magnetic fields). For L-mode plasmas a weaker positive isotope scaling tau(E) similar to A(0.14) has been found in JET (Maggi et al., Plasma Phys. Control. Fusion, vol. 60, 2018, 014045), similar to ITER97-L scaling (Kaye et al., Nucl. Fusion, vol. 37, 1997, 1303). Flux-driven quasi-linear gyrofluid calculations using JETTO-TGLF in L-mode show that local GB scaling is not followed when stiff transport (as is generally the case for ion temperature gradient modes) is combined with an imposed boundary condition taken from the experiment, in this case predicting no isotope dependence. A dimensionless identity plasma pair in hydrogen and deuterium L-mode plasmas has demonstrated scale invariance, confirming that core transport physics is governed, as expected, by the 4 dimensionless parameters rho*, nu*, beta, q (normalised ion Larmor radius, collisionality, plasma pressure and safety factor) consistently with global quasi-linear gyrokinetic TGLF calculations (Maggi et al., Nucl. Fusion, vol. 59, 2019, 076028). We compare findings in JET with those in different devices and discuss the possible reasons for the different isotope scalings reported from different devices. The diversity of observations suggests that the differences may result not only from differences affecting the core, e.g. heating schemes, but are to a large part due to differences in device-specific edge and wall conditions, pointing to the importance of better understanding and controlling pedestal and edge processes.
  •  
10.
  • Hellesen, Carl, 1980- (författare)
  • Diagnosing Fuel Ions in Fusion Plasmas using Neutron Emission Spectroscopy
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Neutron emission spectra, measured with the time of flight spectrometer TOFOR, at the joint European torus (JET) are presented in this thesis. TOFOR has been in use since 2005, routinely measuring the neutron emission from JET plasmas. The work in the thesis mainly concerns the modeling of the signatures in the neutron spectrum that reveal different parts of the fuel ion distribution, such as the thermal bulk plasma as well as energetic ions from neutral beam and ion cyclotron heating. Parametric models of the signatures, using plasma parameters as input, are employed to generate trial neutron spectra. The parameters, such as the fuel ion temperature or the fast ion distribution function, are deduced by iteratively fitting the trial spectra to the measured data. Measurements with TOFOR have been made and the models were applied. The studies are mainly on neutrons from d(d, n)3 He reactions(DD), although the emission from reactions with the plasma impurity 9 Be and triton burn up is covered as well. This has allowed for detailed studies of e.g. the physics ICRF heating as well as the interactions between energetic ions and plasma instabilities, such as toroidal Alfvé Eigenmodes.
  •  
11.
  • Skyman, Andreas, 1982, et al. (författare)
  • Gyrokinetic modelling of stationary electron and impurity profiles in tokamaks
  • 2014
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1089-7674 .- 1070-664X. ; 21:9, s. 092305-
  • Tidskriftsartikel (refereegranskat)abstract
    • Particle transport due to Ion Temperature Gradient (ITG)/Trapped Electron Mode (TEM) turbulence is investigated using the gyrokinetic code GENE. Both a reduced quasilinear treatment and nonlinear simulations are performed for typical tokamak parameters corresponding to ITG dominated turbulence. The gyrokinetic results are compared and contrasted with results from a computationally efficient fluid model. A selfconsistent treatment is used, where the stationary local profiles are calculated corresponding to zero particle flux simultaneously for electrons and trace impurities. The scaling of the stationary profiles with magnetic shear, safety factor, electron-to-ion temperature ratio, collisionality, toroidal sheared rotation, plasma β, triangularity, and elongation is investigated. In addition, the effect of different main ion mass on the zero flux condition is discussed. The electron density gradient can significantly affect the stationary impurity profile scaling. It is therefore expected that a selfconsistent treatment will yield results more comparable to experimental results for parameter scans where the stationary background density profile is sensitive. This is shown to be the case in scans over magnetic shear, collisionality, elongation, and temperature ratio, for which the simultaneous zero flux electron and impurity profiles are calculated. A slight asymmetry between hydrogen, deuterium, and tritium with respect to profile peaking is obtained, in particular, for scans in collisionality and temperature ratio.
  •  
12.
  • Wilkie, George, 1983 (författare)
  • Analytic slowing-down distributions as modified by turbulent transport
  • 2018
  • Ingår i: Journal of Plasma Physics. - 0022-3778 .- 1469-7807. ; 84:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of electrostatic microturbulence on fast particles rapidly decreases at high energy, but can be significant at moderate energy. Previous studies found that, in addition to changes in the energetic particle density, this results in non-trivial changes to the equilibrium velocity distribution. These effects have implications for plasma heating and the stability of Alfven eigenmodes, but make multiscale simulations much more difficult without further approximations. Here, several related analytic model distribution functions are derived from first principles. A single dimensionless parameter characterizes the relative strength of turbulence relative to collisions, and this parameter appears as an exponent in the model distribution functions. Even the most simple of these models reproduces key features of the numerical phase-space transport solution and provides a useful a priori heuristic for determining how strong the effect of turbulence is on the redistribution of energetic particles in toroidal plasmas.
  •  
13.
  •  
14.
  • Magnusson, Joel, 1991, et al. (författare)
  • Multiple colliding laser pulses as a basis for studying high-field high-energy physics
  • 2019
  • Ingår i: Physical Review A - Atomic, Molecular, and Optical Physics. - 2469-9926 .- 2469-9934. ; 100:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Apart from maximizing the strength of optical electromagnetic fields achievable at high-intensity laser facilities, the collision of several phase-matched laser pulses has been identified theoretically as a trigger of and way to study various phenomena. These range from the basic processes of strong-field quantum electrodynamics to the extraordinary dynamics of the generated electron-positron plasmas. This has paved the way for several experimental proposals aimed at both fundamental studies of matter at extreme conditions and the creation of particle and radiation sources. Because of the unprecedented capabilities of such sources, they have the potential to open up new opportunities for experimental studies in nuclear and quark-gluon physics. We perform here a systematic analysis of different regimes and opportunities achievable with the concept of multiple colliding laser pulses, for both current and upcoming laser facilities. We reveal that several distinct regimes could be within reach of multi-petawatt laser facilities.
  •  
15.
  • Stenberg, Gabriella, 1969- (författare)
  • The importance of waves in space plasmas : Examples from the auroral region and the magnetopause
  • 2005
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis discusses the reasons for space exploration and space science. Space plasma physics is identified as an essential building block to understand the space environment and it is argued that observation and analysis of space plasma waves is an important approach.Space plasma waves are the main actors in many important processes. So-called broadband waves are found responsible for much of the ion heating in the auroral region. We investigate the wave properties of broadband waves and show that they can be described as a mixture of electrostatic wave modes. In small regions void of cold electrons the broadband activity is found to be ion acoustic waves and these regions are also identified as acceleration regions. The identification of the wave modes includes reconstructions of the wave distribution function. The reconstruction technique allow us to determine the wave vector spectrum, which cannot be measured directly. The method is applied to other wave events and it is compared in some detail with a similar method.Space plasma wave are also sensitive tools for investigations of both the fine-structure and the dynamics of space plasmas. Studies of whistler mode waves observed in the boundary layer on the magnetospheric side of the magnetopause reveal that the plasma is organized in tube-like structures moving with the plasma drift velocity. The perpendicular dimension of these tubes is of the order of the electron inertial length. We present evidence that each tube is linked to a reconnection site and argue that the high density of tube-like structures indicates patchy reconnection.
  •  
16.
  • Johansson, Fredrik Leffe, 1988- (författare)
  • Rosetta Observations of Plasma and Dust at Comet 67P
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In-situ observations of cometary plasma are not made because they are easy. The historic ESA Rosetta mission was launched in 2004 and traversed space for ten years before arriving at comet 67P/Churyumov-Gerasimenko, which it studied in unprecedented detail for two years. For the Rosetta Dual Langmuir Probe Experiment (LAP), the challenge was increased by the sensors being situated on short booms near a significantly negatively charged spacecraft, which deflects low-energy charged particles away from our instrument. To disentangle the cometary plasma signature in our signal, we create a charging model for the particular design of the Rosetta spacecraft through 3D Particle-in-Cell/hybrid spacecraft-plasma interaction simulations, which also can be applicable to similarly designed spacecraft in cold plasma environments. By virtue of this model, we find a way to cross-calibrate (with the Mutual Impedance probe, MIP) the LAP spacecraft potential to a plasma density estimate with increased temporal resolution and dynamic range than any single plasma instrument alone.To characterise and disentangle the Sun-driven photoelectric current from the positive cometary ion current signal, using three different methods (where we believe one is novel), we find a signature of an attenuation of the Extreme Ultraviolet (EUV) radiation from the Sun that follows the cometary out-gassing activity. We discuss possible reasons for this, where the scattering and absorption of radiation by ~20 nm sized dust grains created by the disintegration of far larger cometary dust grains far from the nucleus appears most likely.By cross-calibrating also our current measurements to MIP, we find a cometary ion speed estimate, which, when applied to a simple comet ionosphere model using the LAP photoemission as a photoionisation proxy, predicts the measured comet plasma densities near perihelion, when comet activity was highest. This demonstrates that the LAP cross-calibration estimates are self-consistent, but also strongly suggests that the EUV attenuation we reported is apparent also in the comet ionosphere, as less plasma is ionised by EUV radiation. The ion speed estimates from LAP are consistent with recent results of cometary water ion velocities from the Ion Composition Analyser (ICA), and much elevated above the comet neutral speed, often by a factor of 5. This verifies that the cometary ions are not collisionally coupled to the neutrals, and instead rapidly accelerated by some electric field, such as an ambipolar electric field or from plasma wave activity.
  •  
17.
  • Baird, C. D., et al. (författare)
  • Realising single-shot measurements of quantum radiation reaction in high-intensity lasers
  • 2019
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 21:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Modern laser technology is now sufficiently advanced that collisions between high-intensity laser pulses and laser-wakefield-accelerated (LWFA) electron beams can reach the strong-field regime, so that it is possible to measure the transition between the classical and quantum regimes of light-matter interactions. However, the energy spectrum of LWFA electron beams can fluctuate significantly from shot to shot, making it difficult to clearly discern quantum effects in radiation reaction (RR), for example. Here we show how this can be accomplished in only a single laser shot. A millimetre-scale pre-collision drift allows the electron beam to expand to a size larger than the laser focal spot and develop a correlation between transverse position and angular divergence. In contrast to previous studies, this means that a measurement of the beam's energy-divergence spectrum automatically distinguishes components of the beam that hit or miss the laser focal spot and therefore do and do not experience RR.
  •  
18.
  • Litnovsky, A., et al. (författare)
  • Dust investigations in TEXTOR : Impact of dust on plasma-wall interactions and on plasma performance
  • 2013
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 438:Suppl., s. S126-S132
  • Tidskriftsartikel (refereegranskat)abstract
    • Dust will have severe impact on ITER performance since the accumulation of tritium in dust represents a safety issue, a possible reaction of dust with air and steam imposes an explosion hazard and the penetration of dust in core plasmas may degrade plasma performance by increasing radiative losses. Investigations were performed in TEXTOR where known amounts of pre-characterized carbon, diamond and tungsten dust were mobilized into plasmas using special dust holders. Mobilization of dust changed a balance between plasma-surface interactions processes, significantly increasing net deposition. Immediately after launch dust was dominating both core and edge plasma parameters. Remarkably, in about 100 ms after the launch, the effect of dust on edge and core plasma parameters was vanished: no increase of carbon and tungsten concentrations in the core plasmas was detected suggesting a prompt transport of dust to the nearby plasma-facing components without further residence in the plasma.
  •  
19.
  • Weckmann, Armin, 1988- (författare)
  • Material migration in tokamaks: Studies of deposition processes and characterisation of dust particles
  • 2015
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Thermonuclear fusion may become an attractive future power source. The most promising of all fusion machine concepts is the tokamak. Despite decades of active research, still huge tasks remain before a fusion power plant can go online. One of these important tasks deals with the interaction between the fusion plasma and the reactor wall. This work focuses on how eroded wall materials of different origin and mass are transported in a tokamak device. Element transport can be examined by injection of certain species of unique and predetermined origin, so called tracers. Tracer experiments were conducted at the TEXTOR tokamak before its final shutdown. This offered an unique opportunity for studies of the wall and other internal components: For the first time it was possible to completely dismantle such a machine and analyse every single part of reactor wall, obtaining a detailed pattern of material migration. Main focus of this work is on the high-Z metals tungsten and molybdenum, which were introduced by WF6 and MoF6 injection into the TEXTOR tokamak in several material migration experiments. It is shown that Mo and W migrate in a similar way around the tokamak and that Mo can be used as tracer for W transport. It is further shown how other materials - medium-Z (Ni), low-Z (N-15 and F), fuel species (D) - migrate and get deposited. Finally, the outcome of dust sampling studies is discussed. It is shown that dust appearance and composition depends on origin, formation conditions and that it can originate even from remote systems like the NBI system. Furthermore, metal splashes and droplets have been found, some of them clearly indicating boiling processes.
  •  
20.
  • Yaroshenko, V.V., et al. (författare)
  • Characteristics of charged dust inferred from the Cassini RPWS measurements in the vicinity of Enceladus
  • 2009
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 57:14-15, s. 1807-1812
  • Tidskriftsartikel (refereegranskat)abstract
    • The data obtained by the Cassini Radio and Plasma Wave Science (RPWS) instrument during the shallow (17.02.2005) and the steep (14.07.2005) crossings of the E-ring revealed a considerable electron depletion in proximity to Enceladus's orbit (the difference between the ion and electron densities can reach similar to 70 cm(-3)). Assuming that this depletion is a signature of the presence of charged dust particles, the main characteristics of dust down to submicron sized particles are derived. The differential size distribution is found to be well described by a power law with an index mu similar to 5.5-6 for the lower size limit a(min) = 0.03 mu m and mu similar to 7.3-8 for a(min) = 0.1 mu m. The calculated average integral dust number density is weakly affected by values of mu and a(min). For a greater than or similar to 0.1 mu m, both flybys gave the maximum dust density about 0.1-0.3 cm(-3) in the vicinity of Enceladus. Our results imply that the dust structure near Enceladus is characterized by approximately the same vertical length scale of 8000 km and reaches a maximum at the same radial distance (displaced outward of the orbit of Enceladus) as found by Kempf et al. [2008. The E-ring in the vicinity of Enceladus. Spatial distribution and properties of the ring particles. Icarus 193, 420-437], from the dust impact data.
  •  
21.
  • Zamanian, Jens, 1982-, et al. (författare)
  • Dynamics of a dusty plasma with intrinsic magnetization
  • 2009
  • Ingår i: New Journal of Physics. - : Institute of Physics. - 1367-2630. ; 11:July, s. 073017-
  • Tidskriftsartikel (refereegranskat)abstract
    • We consider a dusty plasma where dust particles have a magnetic dipole moment. A Hall-MHD type of model, generalized to account for the intrinsic magnetization, is derived. The model is shown to be energy conserving, and the energy density and flux are derived. The general dispersion relation is then derived, and we show that kinetic dust-Alfvén waves exhibit instability for a low dust and ion temperature and high dust density. We discuss the implication of our results.
  •  
22.
  • Newton, Sarah, 1981, et al. (författare)
  • Impurity transport and bulk ion flow in a mixed collisionality stellarator plasma
  • 2017
  • Ingår i: Journal of Plasma Physics. - : Cambridge University Press (CUP). - 0022-3778 .- 1469-7807. ; 83:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The accumulation of impurities in the core of magnetically confined plasmas, resulting from standard collisional transport mechanisms, is a known threat to their performance as fusion energy sources. Whilst the axisymmetric tokamak systems have been shown to benefit from the effect of temperature screening, that is an outward flux of impurities driven by the temperature gradient, impurity accumulation in stellarators was thought to be inevitable, driven robustly by the inward pointing electric field characteristic of hot fusion plasmas. We have shown in Helander et al. (Phys. Rev. Lett, vol. 118, 2017a, 155002) that such screening can in principle also appear in stellarators, in the experimentally relevant mixed collisionality regime, where a highly collisional impurity species is present in a low collisionality bulk plasma. Details of the analytic calculation are presented here, along with the effect of the impurity on the bulk ion flow, which will ultimately affect the bulk contribution to the bootstrap current.
  •  
23.
  • Binda, Federico, 1987- (författare)
  • Characterization of a NE-213 liquid scintillator for neutron flux measurement at JET
  • 2011
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The measurment of the total neutron rate from a nuclear fusion reactor is very important in order to calculate the power produced in a plasma. An improvement of a method currently in use at JET will involve the installation of an organic liquid scintillator NE-213 of 1 cm3 of volume combined with a digital acquisition card. In this project a first stage of the characterization of the digitizer and of the detector has been performed.
  •  
24.
  • Binda, Federico, 1987- (författare)
  • High Count Rate Neutron Detector Installation at JET
  • 2011
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The measurement of fusion power is of paramount importance for the control of a fusion reactor's operation. The neutron yield from the reactor is strictly related to the energy production. One of the methods employed at JET to measure the yield involves the use of the MPRu spectrometer together with the neutron camera. However the MPRu has an intrinsically low efficiency (about 10-6), which results in a poor time resolution. An improvement involving the installation of a NE213 detectorfor high count rate has been proposed. The testing phase of the new instrumentation, conducted at Uppsala University, has shown that the acquisition system works properly and it is ready to be installed on site in view of the coming JET experimental campaign.
  •  
25.
  • Wilder, F. D., et al. (författare)
  • Observations of large-amplitude, parallel, electrostatic waves associated with the Kelvin-Helmholtz instability by the magnetospheric multiscale mission
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:17, s. 8859-8866
  • Tidskriftsartikel (refereegranskat)abstract
    • On 8 September 2015, the four Magnetospheric Multiscale spacecraft encountered a Kelvin-Helmholtz unstable magnetopause near the dusk flank. The spacecraft observed periodic compressed current sheets, between which the plasma was turbulent. We present observations of large-amplitude (up to 100 mV/m) oscillations in the electric field. Because these oscillations are purely parallel to the background magnetic field, electrostatic, and below the ion plasma frequency, they are likely to be ion acoustic-like waves. These waves are observed in a turbulent plasma where multiple particle populations are intermittently mixed, including cold electrons with energies less than 10 eV. Stability analysis suggests a cold electron component is necessary for wave growth.
  •  
26.
  • Garcia-Carrasco, Alvaro, et al. (författare)
  • Impact of helium implantation and ion-induced damage on reflectivity of molybdenum mirrors
  • 2016
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section B. - : Elsevier. - 0168-583X .- 1872-9584.
  • Tidskriftsartikel (refereegranskat)abstract
    • Molybdenum mirrors were irradiated with Mo and He ions to simulate the effect of neutron irradiation on diagnostic first mirrors in next-generation fusion devices. Up to 30 dpa were produced under molybdenum irradiation leading to a slight decrease of reflectivity in the near infrared range. After 3×1017 cm-2 of helium irradiation, reflectivity decreased by up to 20%. Combined irradiation by helium and molybdenum led to similar effects on reflectivity as irradiation with helium alone. Ion beam analysis showed that only 7% of the implanted helium was retained in the first 40nm layer of the mirror. The structure of the near-surface layer after irradiation was studied with scanning transmission electron microscopy and the extent and size distribution of helium bubbles was documented. The consequences of ion-induced damage on the performance of diagnostic components are discussed.
  •  
27.
  • Siminos, Evangelos, 1979, et al. (författare)
  • Parametric study of laser wakefield driven generation of intense sub-cycle pulses
  • 2022
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 64:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Intense sub-cycle electromagnetic pulses allow one to drive nonlinear processes in matter with unprecedented levels of control. However, it remains challenging to scale such sources in the relativistic regime. Recently, a scheme that utilizes laser-driven wakes in plasmas to amplify and compress seed laser pulses to produce tunable, carrier-envelope-phase stable, relativistic sub-cycle pulses has been proposed. Here, we present parametric studies of this process using particle-in-cell simulations, showing its robustness over a wide range of experimentally accessible laser-plasma interaction parameters, spanning more than two orders of magnitude of background plasma density. The method is shown to work with different gas-jet profiles, including structured density profiles and is robust over a relatively wide range of driver laser intensities. Our study shows that sub-cycle pulses of up to 10mJ of energy can be produced.
  •  
28.
  • Thiele, Illia, 1989, et al. (författare)
  • Electron Beam Driven Generation of Frequency-Tunable Isolated Relativistic Subcycle Pulses
  • 2019
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 122
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2019 American Physical Society. We propose a novel scheme for frequency-tunable subcycle electromagnetic pulse generation. To this end a pump electron beam is injected into an electromagnetic seed pulse as the latter is reflected by a mirror. The electron beam is shown to be able to amplify the field of the seed pulse while upshifting its central frequency and reducing its number of cycles. We demonstrate the amplification by means of 1D and 2D particle-in-cell simulations. In order to explain and optimize the process, a model based on fluid theory is proposed. We estimate that using currently available electron beams and terahertz pulse sources, our scheme is able to produce millijoule-strong midinfrared subcycle pulses.
  •  
29.
  • Hoppe, Mathias, 1993, et al. (författare)
  • Runaway electron generation during tokamak start-up
  • 2022
  • Ingår i: Journal of Plasma Physics. - 0022-3778 .- 1469-7807. ; 88:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Tokamak start-up is characterized by low electron densities and strong electric fields, in order to quickly raise the plasma current and temperature, allowing the plasma to fully ionize and magnetic flux surfaces to form. Such conditions are ideal for the formation of superthermal electrons, which may reduce the efficiency of ohmic heating and prevent the formation of a healthy thermal fusion plasma. This is of particular concern in ITER where engineering limitations put restrictions on the allowable electric fields and limit the prefill densities during start-up. In this study, we present a new 0D burn-through simulation tool called STREAM (STart-up Runaway Electron Analysis Model), which self-consistently evolves the plasma density, temperature and electric field, while accounting for the generation and loss of relativistic runaway electrons. After verifying the burn-through model, we investigate conditions under which runaway electrons can form during tokamak start-up as well as their effects on the plasma initiation. We find that Dreicer generation plays a crucial role in determining whether a discharge becomes runaway-dominated or not, and that a large number of runaway electrons could limit the ohmic heating of the plasma, thus preventing successful burn-through or further ramp-up of the plasma current. The runaway generation can be suppressed by raising the density via gas fuelling, but only if done sufficiently early. Otherwise a large runaway seed may have already been built up, which can avalanche even at relatively low electric fields and high densities.
  •  
30.
  • Insulander Björk, Klara, 1982, et al. (författare)
  • Kinetic modelling of runaway electron generation in argon-induced disruptions in ASDEX Upgrade
  • 2020
  • Ingår i: Journal of Plasma Physics. - 0022-3778 .- 1469-7807. ; 86:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Massive material injection has been proposed as a way to mitigate the formation of a beam of relativistic runaway electrons that may result from a disruption in tokamak plasmas. In this paper we analyse runaway generation observed in eleven ASDEX Upgrade discharges where disruption was triggered using massive gas injection. We present numerical simulations in scenarios characteristic of on-axis plasma conditions, constrained by experimental observations, using a description of the runaway dynamics with a self-consistent electric field and temperature evolution in two-dimensional momentum space and zero-dimensional real space. We describe the evolution of the electron distribution function during the disruption, and show that the runaway seed generation is dominated by hot-tail in all of the simulated discharges. We reproduce the observed dependence of the current dissipation rate on the amount of injected argon during the runaway plateau phase. Our simulations also indicate that above a threshold amount of injected argon, the current density after the current quench depends strongly on the argon densities. This trend is not observed in the experiments, which suggests that effects not captured by zero-dimensional kinetic modelling - such as runaway seed transport - are also important.
  •  
31.
  • Scott, S. D., et al. (författare)
  • Fast-ion physics in SPARC
  • 2020
  • Ingår i: Journal of Plasma Physics. - 0022-3778 .- 1469-7807. ; 86:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Potential loss of energetic ions including alphas and radio-frequency tail ions due to classical orbit effects and magnetohydrodynamic instabilities (MHD) are central physics issues in the design and experimental physics programme of the SPARC tokamak. The expected loss of fusion alpha power due to ripple-induced transport is computed for the SPARC tokamak design by the ASCOT and SPIRAL orbit-simulation codes, to assess the expected surface heating of plasma-facing components. We find good agreement between the ASCOT and SPIRAL simulation results not only in integrated quantities (fraction of alpha power loss) but also in the spatial, temporal and pitch-angle dependence of the losses. If the toroidal field (TF) coils are well-aligned, the SPARC edge ripple is small (0.15-0.30 %), the computed ripple-induced alpha power loss is small (similar to 0.25%) and the corresponding peak surface power density is acceptable (244 kW m(-2)). However, the ripple and ripple-induced losses increase strongly if the TF coils are assumed to suffer increasing magnitudes of misalignment. Surface heat loads may become problematic if the TF coil misalignment approaches the centimetre level. Ripple-induced losses of the energetic ion tail driven by ion cyclotron range of frequency (ICRF) heating are not expected to generate significant wall or limiter heating in the nominal SPARC plasma scenario. Because the expected classical fast-ion losses are small, SPARC will be able to observe and study fast-ion redistribution due to MHD including sawteeth and Alfven eigenmodes (AEs). SPARC's parameter space for AE physics even at moderate Q is shown to reasonably overlap that of the demonstration power plant ARC (Sorbom et al., Fusion Engng Des., vol. 100, 2015, p. 378), and thus measurements of AE mode amplitude, spectrum and associated fast-ion transport in SPARC would provide relevant guidance about AE behaviour expected in ARC.
  •  
32.
  • Abu-Shawareb, H., et al. (författare)
  • Achievement of Target Gain Larger than Unity in an Inertial Fusion Experiment
  • 2024
  • Ingår i: Physical Review Letters. - 0031-9007. ; 132:6
  • Tidskriftsartikel (refereegranskat)abstract
    • On December 5, 2022, an indirect drive fusion implosion on the National Ignition Facility (NIF) achieved a target gain Gtarget of 1.5. This is the first laboratory demonstration of exceeding "scientific breakeven"(or Gtarget>1) where 2.05 MJ of 351 nm laser light produced 3.1 MJ of total fusion yield, a result which significantly exceeds the Lawson criterion for fusion ignition as reported in a previous NIF implosion [H. Abu-Shawareb et al. (Indirect Drive ICF Collaboration), Phys. Rev. Lett. 129, 075001 (2022)PRLTAO0031-900710.1103/PhysRevLett.129.075001]. This achievement is the culmination of more than five decades of research and gives proof that laboratory fusion, based on fundamental physics principles, is possible. This Letter reports on the target, laser, design, and experimental advancements that led to this result.
  •  
33.
  • Giacomelli, Luca, et al. (författare)
  • Comparison of neutron emission spectra for D and DT plasmas with auxiliary heating
  • 2005
  • Ingår i: The European Physical Journal D. - : Springer Science and Business Media LLC. - 1434-6060 .- 1434-6079. ; :33, s. 235-241
  • Tidskriftsartikel (refereegranskat)abstract
    • The DT experimental campaign on JET (1997) represents a major step forward for neutronemission spectroscopy (NES) diagnostic through the high quality data collected by the Magnetic ProtonRecoil (MPR) spectrometer. These data for different DT plasma heating scenarios were analyzed here todetermine the underlying fuel ion populations which in turn were used to project the 2.5-MeV neutronemission spectra for deuterium plasmas. The results on neutron spectra for DT and D plasmas in thesame conditions were compared in order to determine the plasma information that could be expectedfrom NES diagnosis of D plasmas and the instrumental characteristics that would be required. FutureNES experiments would make dual sight line observations possible and the added diagnostic value is alsoassessed based on the present results.
  •  
34.
  •  
35.
  • Gorini, G, et al. (författare)
  • Proposed Neutron Emission Spectroscopy Diagnostics of Energetic Deutrons in JET rium Plasmas
  • 2001
  • Ingår i: 7th IAEA TCM on Energetic Particles.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The DT experimental campaign on JET (1997) represented a major step forward for neutron emissionspectroscopy (NES) diagnostics thanks to the high count rate measurements obtained with themagnetic proton recoil (MPR) neutron spectrometer in high fusion yield plasmas [1]. NESmeasurements were made on JET DT plasmas for different heating conditions including thosegenerating energetic deuterons either directly through NB injection, or through ICRH accelerationusing the (D)T minority scheme [2]. A multiple-component model has been developed for analysisof dt neutron spectra that is based on a simplified description of fuel ion velocity distributions fordifferent heating conditions [3,4]. The same model is used here for projections of NES spectra fromJET deuterium plasmas using the dt results as input. This is done on the basis of a system of twocomplementary NES instruments, the TOFOR (Time of Flight - Optimized Rate) [5] and MPRu(Magnetic Proton Recoil Upgrade) spectrometers that are presently proposed for installation onJET [6]. Both spectrometers would record neutron spectra in D plasmas but for different viewinglines. TOFOR would have a “vertical” view, i.e. at an angle of 90° relative to the toroidal magneticfield. This is the same viewing line used for some of the previous dd NES measurements on JET[7]. MPRu would have a “tangential” view, i.e. horizontal (on the equatorial plane) at an angle of47° relative to the toroidal magnetic field and opposite to the beam injection direction. This is thesame viewing line used for the 1997 dt measurements using the magnetic proton recoil (MPR)spectrometer.Projections of dd neutron spectra under the assumptions above are used here for an assessmentof the performance and requirements of NES as a diagnostic of energetic deuterons in JET.
  •  
36.
  • Raptis, Savvas, et al. (författare)
  • On Magnetosheath Jet Kinetic Structure and Plasma Properties
  • 2022
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 49:21
  • Tidskriftsartikel (refereegranskat)abstract
    • High-speed plasma jets downstream of Earth's bow shock are high velocity streams associated with a variety of shock and magnetospheric phenomena. In this work, using the Magnetosphere Multiscale mission, we study the properties of a jet found downstream of the Quasi-parallel bow shock using high-resolution (burst) data. By doing so, we demonstrate how the jet is an inherently kinetic structure described by highly variable velocity distributions. The observed distributions show the presence of two plasma population, a cold/fast jet and a hotter/slower background population. We derive partial moments for the jet population to isolate its properties. The resulting partial moments appear different from the full ones which are typically used in similar studies. These discrepancies show how jets are more similar to upstream solar wind beams compared to what was previously believed. Finally, we explore the consequences of our results and methodology regarding the characterization, origin, and evolution of jets. 
  •  
37.
  • Baggioli, Matteo, et al. (författare)
  • Holographic plasmon relaxation with and without broken translations
  • 2019
  • Ingår i: Journal of High Energy Physics (JHEP). - : SPRINGER. - 1126-6708 .- 1029-8479. ; :9
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the dynamics and the relaxation of bulk plasmons in strongly coupled and quantum critical systems using the holographic framework. We analyze the dispersion relation of the plasmonic modes in detail for an illustrative class of holographic bottom-up models. Comparing to a simple hydrodynamic formula, we entangle the complicated interplay between the three least damped modes and shed light on the underlying physical processes. Such as the dependence of the plasma frequency and the effective relaxation time in terms of the electromagnetic coupling, the charge and the temperature of the system. Introducing momentum dissipation, we then identify its additional contribution to the damping. Finally, we consider the spontaneous symmetry breaking (SSB) of translational invariance. Upon dialing the strength of the SSB, we observe an increase of the longitudinal sound speed controlled by the elastic moduli and a decrease in the plasma frequency of the gapped plasmon. We comment on the condensed matter interpretation of this mechanism.
  •  
38.
  • Romanelli, M., et al. (författare)
  • Code Integration, Data Verification, and Models Validation Using the ITER Integrated Modeling and Analysis System (IMAS) in EUROfusion
  • 2020
  • Ingår i: Fusion science and technology. - : Bellwether Publishing, Ltd.. - 1536-1055 .- 1943-7641. ; 76:8, s. 894-900
  • Tidskriftsartikel (refereegranskat)abstract
    • The ITER Integrated Modelling and Analysis System (IMAS) has been adopted by the EUROfusion Consortium as a platform to facilitate the analysis and verification of data from multiple tokamaks for the integration of physics codes and the validation of physics models for fusion plasma simulations. Data mapping tools have been developed to translate the tokamaks’ native data format into IMAS. The mapping required the adoption of standard coordinates, conventions on direction of vectors, signs of fields, and harmonization of physics units. The mapped data have been verified by running integrated simulations using Kepler workflows. Results of the test using IMAS data are reported here along with an assessment of the system for present and future fusion applications.
  •  
39.
  • Björklund Svensson, Jonas (författare)
  • Extreme Electron Beams and Brilliant X-rays : Generation, Manipulation and Characterization of Relativistic Electron Beams for and from Plasma-Based Accelerators
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is based on work done by the author on the development of plasma-based electron accelerators driven by ultra-intense laser pulses and dense electron bunches. Plasma based accelerators have several benefits, such as accelerating fields around 1000 times stronger than in “conventional” radio-frequency accelerators, which can allow for shrinking the overall footprint of the accelerator. They can also allow for generating electron beams with unprecedented peak currents and ultra-low emittances, meaning that a large number of electrons can be packed into a very short time duration and that the quality of the bunches is high. They can also be used to generate X-ray pulses with durations only otherwise achievable at a few large accelerator facilities, using a laboratory setup the size of a large living room. These characteristics make plasma-based accelerators interesting as a technology for future particle colliders and free-electron lasers, as well as, for example, smaller and more available X-ray sources with particular source characteristics such as ultra-short pulse durations.This thesis describes both numerical and experimental studies on plasma-based accelerators. The experimental work has mainly been on generating electron bunches and X-ray pulses using a laser-wakefield accelerator, as well as applications of the generated X-rays. The results from this branch of the research include the identification and demonstration of a new regime for laser-driven X-ray generation, which produces pulses with significantly reduced divergence compared to the standard method, simplifying the subsequent use of such pulses in applications.The numerical work has been focused towards conventional radio-frequency accelerators, concerning the shaping of electron bunches from such an accelerator for use in electron beam-driven plasma-wakefield acceleration. Themain point in this research has been removing or circumventing detrimental effects that occur during acceleration and transport, to create bunches which can drive stable wakes. One of the results from this research is an optimization strategy for certain bunch compressors, leading to a decrease in chromatic and geometric aberrations in the bunch. The common thread through both experimental and numerical work is plasma-based acceleration of electrons, and as such there is a larger overlap between these two parts than might initially be seen.
  •  
40.
  • Hood Highcock, Edmund, 1985, et al. (författare)
  • Optimisation of confinement in a fusion reactor using a nonlinear turbulence model
  • 2018
  • Ingår i: Journal of Plasma Physics. - 0022-3778 .- 1469-7807. ; 84:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The confinement of heat in the core of a magnetic fusion reactor is optimised using a multidimensional optimisation algorithm. For the first time in such a study, the loss of heat due to turbulence is modelled at every stage using first-principles nonlinear simulations which accurately capture the turbulent cascade and large-scale zonal flows. The simulations utilise a novel approach, with gyrofluid treatment of the small-scale drift waves and gyrokinetic treatment of the large-scale zonal flows. A simple near-circular equilibrium with standard parameters is chosen as the initial condition. The figure of merit, fusion power per unit volume, is calculated, and then two control parameters, the elongation and triangularity of the outer flux surface, are varied, with the algorithm seeking to optimise the chosen figure of merit. A twofold increase in the plasma power per unit volume is achieved by moving to higher elongation and strongly negative triangularity.
  •  
41.
  • Pellinen-Wannberg, Asta, 1953-, et al. (författare)
  • The solar cycle effect on the atmosphere as a scintillator for meteor observations
  • 2010
  • Ingår i: Icy Bodies of the Solar System. - Cambridge : Cambridge University Press. - 9780521764889 ; , s. 249-252, s. 249-252
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • We discuss using high solar cycle atmospheric conditions as sensors for observing meteors and their properties. High altitude meteor trails (HAMTs) have sometimes been observed with HPLA (High Power Large Aperture) radars. At other times they are not seen. In the absence of systematic studies on this topic, we surmise that the reason might be differing atmospheric conditions during the observations. At EISCAT HAMTs were observed in 1990 and 1991. Very high meteor trails were observed with Israeli L-band radars in 1998, 1999 and 2001. Through the Leonid activity, around the latest perihelion passage of comet Tempel-Tuttle, optical meteors as high as 200 km were reported. This was partly due to new and better observing methods. However, all the reported periods of high altitude meteors seem to correlate with solar cycle maximum. The enhanced atmospheric and ionospheric densities extend the meteoroid interaction range with the atmosphere along its path, offering a better possibility to distinguish differential ablation of the various meteoric constituents. This should be studied during the next solar maximum, due within a few years.
  •  
42.
  • Ferri, Julien, 1990, et al. (författare)
  • Enhancement of laser-driven ion acceleration in non-periodic nanostructured targets
  • 2020
  • Ingår i: Journal of Plasma Physics. - 0022-3778 .- 1469-7807. ; 86:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Using particle-in-cell simulations, we demonstrate an improvement of the target-normal-sheath acceleration (TNSA) of protons in non-periodically nanostructured targets with micron-scale thickness. Compared to standard flat foils, an increase in the proton cutoff energy by up to a factor of two is observed in foils coated with nanocones or perforated with nanoholes. The latter nano-perforated foils yield the highest enhancement, which we show to be robust over a broad range of foil thicknesses and hole diameters. The improvement of TNSA performance results from more efficient hot-electron generation, caused by a more complex laser-electron interaction geometry and increased effective interaction area and duration. We show that TNSA is optimized for a nanohole distribution of relatively low areal density and that is not required to be periodic, thus relaxing the manufacturing constraints.
  •  
43.
  • Skyman, Andreas, 1982 (författare)
  • Gyrokinetic simulations of turbulent transport in tokamak plasmas
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • With the enormous growth of high performance computing (HPC) over the last few decades, plasma physicists have gained access to a valuable instrument for investigating turbulent plasma behaviour. In this thesis, these tools are utilised for the study of particle transport in fusion devices of the tokamak variety.The transport properties of impurities is a major part of the work. This is of high relevance for the performance and optimisation of magnetic fusion devices. For instance, the possible accumulation of He ash in the core of the reactor plasma will serve to dilute the fuel, thus lowering fusion power. Heavier impurity species, originating from the plasma-facing surfaces, may also accumulate in the core, and wall-impurities of relatively low density may lead to unacceptable energy losses in the form of radiation. In an operational power plant, such as the ITER device, both impurities of low and high charge numbers will be present.This thesis studies turbulent particle transport driven by two different modes of drift wave turbulence: the trapped electron (TE) and ion temperature gradient (ITG) modes. Results for ITG mode driven impurity transport are also compared with experimental results from the Joint European Torus.Principal focus is on the balance of convective and diffusive transport, as quantified by the stationary density gradient of zero flux (“peaking factor”, PF). Quasi- and nonlinear results are obtained using the gyrokinetic code GENE, and compared with results from a computationally efficient multi-fluid model. The results are scalings of PF with the driving background gradients of temperature and density, and other parameters, including plasma shape and sheared toroidal rotation.
  •  
44.
  • Hamrin, Maria, et al. (författare)
  • Geomagnetic activity effects on plasma sheet energy conversion
  • 2010
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 28, s. 1813-1825
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article we use three years (2001, 2002, and 2004) of Cluster plasma sheet data to investigate what happens to localized energy conversion regions (ECRs) in the plasma sheet during times of high magnetospheric activity. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have studied the influence on Concentrated Load Regions (CLRs) and Concentrated Generator Regions (CGRs) from variations in the geomagnetic disturbance level as expressed by the Kp, the AE, and the Dst indices. We find that the ECR occurrence frequency increases during higher magnetospheric activities, and that the ECRs become stronger. This is true both for CLRs and for CGRs, and the localized energy conversion therefore concerns energy conversion in both directions between the particles and the fields in the plasma sheet. A higher geomagnetic activity hence increases the general level of energy conversion in the plasma sheet. Moreover, we have shown that CLRs live longer during magnetically disturbed times, hence converting more electromagnetic energy. The CGR lifetime, on the other hand, seems to be unaffected by the geomagnetic activity level. The evidence for increased energy conversion during geomagnetically disturbed times is most clear for Kp and for AE, but there are also some indications that energy conversion increases during large negative Dst. This is consistent with the plasma sheet magnetically mapping to the auroral zone, and therefore being more tightly coupled to auroral activities and variations in the AE and Kp indices, than to variations in the ring current region as described by the Dst index.
  •  
45.
  • Sahlberg, Arne (författare)
  • Multi-sightline neutron emission spectroscopy of D and T fusion plasmas at JET
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • An analysis of the neutron emission from a fusion plasma can be used to determine plasma properties and diagnose fusion performance. In this thesis, several analysis methods for neutron spectroscopy are presented and applied to data from the experimental fusion device JET. JET has numerous instruments for neutron measurements installed, and data from several of them are used in this thesis.The work presented here describes how various plasma parameters affect the neutron emission and how this information can be used to determine properties of the fusion plasma. Forward fitting of models parameterized in terms of the relevant plasma properties are a central part of most of the analysis methods and are used to determine key features of supra-thermal (“fast”) ion distributions for prediction of plasma performance in deuterium-tritium (d-t) experiments, and to determine the branching ratio for the formation of a short-lived 5He resonance in t+t reactions. The thesis also includes work concerning uncertainty quantification of the modeling of the neutron emission rate and the calculation of pile-up distortion of light-yield spectra from liquid scintillator detectors.A major contribution of this thesis is the novel methods for measuring properties of a fast-ion distribution using neutron spectroscopy with multiple sightlines. The combination of data from instruments viewing different parts of the plasma and/or with different viewing angles permits us to study fast-ion behavior in a more consistent and detailed fashion than if we analyze each measurement separately. Another interesting result is the first-ever observation of the neutron spectrum from t+t reactions in a magnetically confined fusion plasma, from which we can learn important things about the t+t reaction in reactor relevant conditions.
  •  
46.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
47.
  • Brändström, Urban, 1965- (författare)
  • The Auroral Large Imaging System : design, operation and scientific results
  • 2003
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The Auroral Large Imaging System (ALIS) was proposed in 1989 by Åke Steen as a joint Scandinavian ground-based nework of automated auroral imaging stations. The primary scientic objective was in the field of auroral physics, but it was soon realised that ALIS could be used in other fields, for example, studies of Polar Stratospheric Clouds (PSC), meteors, as well as other atmospheric phenomena.This report describes the design, operation and scientic results from a Swedish prototype of ALIS consisting of six unmanned remote-controlled stations located in a grid of about 50 km in northern Sweden. Each station is equipped with a sensitive high-resolution (1024 x 1024 pixels) unintensified monochromatic CCDimager. A six-position filter-wheel for narrow-band interference filters facilitates absolute spectroscopic measurements of, for example, auroral and airglow emissions. Overlapping fields-of-view resulting from the station baseline of about 50 km combined with the station field-of-view of 50° to 60°, enable triangulation as well as tomographic methods to be employed for obtaining altitude information of the observed phenomena.ALIS was probably one of the first instruments to take advantage of unintensi- fied (i.e. no image-intensifier) scientific-grade CCDs as detectors for spectroscopic imaging studies with multiple stations of faint phenomena such as aurora, airglow, etc. This makes absolute calibration a task that is as important as it is dificult.Although ALIS was primarily designed for auroral studies, the majority of the scientific results so far have, quite unexpectedly, been obtained from observations of HF pump-enhanced airglow (recently renamed Radio-Induced Aurora). ALIS made the first unambiguous observation of this phenomena at high-latitudes and the first tomography-like inversion of height profiles of the airglow regions. The scientific results so far include tomographic estimates of the auroral electron spectra, coordinated observations with satellite and radar, as well as studies of polar stratospheric clouds. An ALIS imager also participated in a joint project that produced the first ground-based daytime auroral images. Recently ALIS made spectroscopic observations of a Leonid meteor-trail and preliminary analysis indicates the possible detection of water in the Leonid.
  •  
48.
  • Engwall, Erik, 1977-, et al. (författare)
  • Wake formation behind positively charged spacecraft in flowing tenuous plasmas
  • 2006
  • Ingår i: Physics of Plasmas. - Melville, USA : American Institute of Physics. - 1070-664X .- 1089-7674. ; 13:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Spacecraft in tenuous plasmas become positively charged because of photoelectron emission. If the plasma is supersonically drifting with respect to the spacecraft, a wake forms behind it. When the kinetic energy of the positive ions in the plasma is not sufficient to overcome the electrostatic barrier of the spacecraft potential, they scatter on the potential structure from the spacecraft rather than get absorbed or scattered by the spacecraft body. For tenuous plasmas with Debye lengths much exceeding the spacecraft size, the potential structure extends far from the spacecraft, and consequently in this case the wake is of transverse dimensions much larger than the spacecraft. This enhanced wake formation process is demonstrated by theoretical analysis and computer simulations. Comparison to observations from the Cluster satellites shows good agreement.
  •  
49.
  • Khotyaintsev, Yuri, 1976- (författare)
  • Alfvén Waves and Energy Transformation in Space Plasmas
  • 2002
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is focused on the role of Alfvén waves in the energy transformation and transport in the magnetosphere. Different aspects of Alfvén wave generation, propagation and dissipation are considered. The study involves analysis of experimental data from the Freja, Polar and Cluster spacecraft, as well as theoretical development. An overview of the linear theory of Alfvén waves is presented, including the effects of fnite parallel electron inertia and fnite ion gyroradius, and nonlinear theory is developed for large amplitude Alfvén solitons and structures. The methodology is presented for experimental identification of dispersive Alfvén waves in a frame moving with respect to the plasma, which facilitates the resolution of the space-time ambiguity in such measurements. Dispersive Alfvén waves are identified on field lines from the topside ionosphere up to the magnetopause and it is suggested they play an important role in magnetospheric physics. One of the processes where Alfvén waves are important is the establishment of the field aligned current system, which transports the energy from the reconnection regions at the magnetopause to the ionosphere, where a part of the energy is dissipated. The main mechanism for the dissipation in the top-side ionosphere is related to wave-particle interactions leading to particle energization/heating. An observed signature of such a process is the presence of parallel energetic electron bursts associated with dispersive Alfvén waves. The accelerated electrons (electron beams) are unstable with respect to the generation of high frequency plasma wave modes. Therefore this thesis also demonstrates an indirect coupling between low frequency Alfvén wave and high frequency oscillations.
  •  
50.
  • Pitout, Frédéric, 1972- (författare)
  • The Polar Cusp and its Ionospheric footprint : Dynamics and Transients
  • 2002
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The magnetopause, the boundary layer between the solar wind and the Earth’s magnetosphere, is not closed as we have long thought. Transfers of energy, particles and momentum from the solar wind to the magnetosphere actually take place. In the Earth’s magnetosphere, the polar cusps are two key regions where the solar wind particles have direct access to the magnetosphere and the polar ionosphere. The ionospheric footprint of the polar cusp is highly dynamic because its location and behavior depend directly on the external conditions (interplanetary magnetic field and solar wind pressure). The cusp dynamics has been studied by means of ground-based and satellite-borne instrumentation. The theory of magnetic reconnection has been successful in explaining entry of solar wind particles into the magnetosphere. Observations indicate that the reconnection process is not steady but rather sporadic or pulsed. The consequences of transient injections of solar wind particles into the dayside high-latitude ionosphere and the associated strong convection electric fields are observed, modeled and discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 4310
Typ av publikation
tidskriftsartikel (3108)
konferensbidrag (694)
doktorsavhandling (149)
rapport (148)
licentiatavhandling (63)
forskningsöversikt (53)
visa fler...
annan publikation (49)
bokkapitel (30)
proceedings (redaktörskap) (7)
bok (4)
konstnärligt arbete (3)
recension (2)
patent (1)
visa färre...
Typ av innehåll
refereegranskat (3685)
övrigt vetenskapligt/konstnärligt (614)
populärvet., debatt m.m. (10)
Författare/redaktör
Frassinetti, Lorenzo (541)
Conroy, Sean (442)
Cecconello, Marco (414)
Ericsson, Göran (414)
Rubel, Marek (412)
Eriksson, Jacob, Dr, ... (401)
visa fler...
Zychor, I (390)
Hjalmarsson, Anders (389)
Petersson, Per (376)
Andersson Sundén, Er ... (370)
Weiszflog, Matthias (368)
Sjöstrand, Henrik, 1 ... (354)
Possnert, Göran, 195 ... (352)
Hellsten, Torbjörn (341)
Menmuir, Sheena (325)
Weckmann, Armin (321)
Bykov, Igor (319)
Hellesen, Carl, 1980 ... (318)
Ström, Petter (317)
Binda, Federico, 198 ... (309)
Skiba, Mateusz, 1985 ... (302)
Bergsåker, Henric (294)
Rachlew, Elisabeth, ... (280)
Dzysiuk, Nataliia (263)
Johnson, Thomas (240)
Fülöp, Tünde, 1970 (205)
Tholerus, Emmi (203)
Khotyaintsev, Yuri V ... (180)
Stefanikova, Estera (178)
Lindqvist, Per-Arne (176)
Garcia-Carrasco, Alv ... (171)
Ratynskaia, Svetlana (161)
Ivanova, Darya (155)
Tolias, Panagiotis (149)
Garcia Carrasco, Alv ... (147)
Olivares, Pablo Vall ... (139)
Elevant, Thomas (138)
Strand, Pär, 1968 (127)
Asp, E (123)
Giroud, C (123)
Jonsson, Thomas, 197 ... (119)
Nordman, Hans, 1957 (117)
Weiland, Jan, 1944 (112)
Ergun, R. E. (109)
Pusztai, Istvan, 198 ... (109)
Burch, J. L. (105)
Russell, C. T. (105)
Zhou, Yushun (104)
Vaivads, Andris (102)
Saarelma, S (101)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (2007)
Uppsala universitet (1306)
Chalmers tekniska högskola (1116)
Umeå universitet (426)
Linköpings universitet (136)
Göteborgs universitet (81)
visa fler...
Lunds universitet (69)
Stockholms universitet (65)
Luleå tekniska universitet (42)
RISE (11)
Högskolan i Borås (5)
Mälardalens universitet (4)
Högskolan Väst (3)
Karlstads universitet (3)
Högskolan Dalarna (3)
Jönköping University (2)
Södertörns högskola (2)
Naturvårdsverket (1)
Mittuniversitetet (1)
Karolinska Institutet (1)
Blekinge Tekniska Högskola (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (4293)
Svenska (14)
Ryska (1)
Odefinierat språk (1)
Spanska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (4310)
Teknik (249)
Samhällsvetenskap (3)
Medicin och hälsovetenskap (2)
Lantbruksvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy