SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Morrice Nicholas) "

Search: WFRF:(Morrice Nicholas)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2019
  • Journal article (peer-reviewed)
  •  
2.
  • Berggreen, Christine, et al. (author)
  • cAMP-elevation mediated by β-adrenergic stimulation inhibits salt-inducible kinase (SIK) 3 activity in adipocytes.
  • 2012
  • In: Cellular Signalling. - : Elsevier BV. - 1873-3913 .- 0898-6568. ; 24:9, s. 1863-1871
  • Journal article (peer-reviewed)abstract
    • Salt-inducible kinase (SIK) 3 is a virtually unstudied, ubiquitously expressed serine/threonine kinase, belonging to the AMP-activated protein kinase (AMPK)-related family of kinases, all of which are regulated by LKB1 phosphorylation of a threonine residue in their activation (T)-loops. Findings in adrenal cells have revealed a role for cAMP in the regulation of SIK1, and recent findings suggest that insulin can regulate an SIK isoform in Drosophila. As cAMP has important functions in adipocytes, mainly in the regulation of lipolysis, we have evaluated a potential role for cAMP, as well as for insulin, in the regulation of SIK3 in these cells. We establish that raised cAMP levels in response to forskolin and the β-adrenergic receptor agonist CL 316,243 induce a phosphorylation of SIK3 in HEK293 cells and primary adipocytes. This phosphorylation coincides with increased 14-3-3 binding to SIK3 in these cell types. Our findings also show that cAMP-elevation results in reduced SIK3 activity in adipocytes. Phosphopeptide mapping and site-directed mutagenesis reveal that the cAMP-mediated regulation of SIK3 appears to depend on three residues, T469, S551 and S674, that all contribute to some extent to the cAMP-induced phosphorylation and 14-3-3-binding. As the cAMP-induced regulation can be reversed with the protein kinase A (PKA) inhibitor H89, and a role for other candidate kinases, including PKB and RSK, could be excluded, we believe that PKA is the kinase responsible for SIK3 regulation in response to elevated cAMP levels. Our findings of cAMP-mediated regulation of SIK3 suggest that SIK3 may mediate some of the effects of this important second messenger in adipocytes.
  •  
3.
  • Henriksson, Emma, et al. (author)
  • SIK2 regulates CRTCs, HDAC4 and glucose uptake in adipocytes
  • 2015
  • In: Journal of Cell Science. - : The Company of Biologists. - 0021-9533 .- 1477-9137. ; 128:3, s. 472-486
  • Journal article (peer-reviewed)abstract
    • Salt-inducible kinase 2 (SIK2) is an AMP-activated protein kinase (AMPK) related kinase abundantly expressed in adipose tissue. Our aim was to identify molecular targets and functions of SIK2 in adipocytes, and to address the role of PKA-mediated phosphorylation of SIK2 on Ser358. Modulation of SIK2 in adipocytes resulted in altered phosphorylation of CREB-regulated transcription co-activator 2 (CRTC2), CRTC3 and class IIa histone deacetylase 4 (HDAC4). Furthermore, CRTC2, CRTC3, HDAC4 and protein phosphatase 2A (PP2A) interacted with SIK2, and the binding of CRTCs and PP2A to wild-type but not Ser358Ala SIK2, was reduced by cAMP elevation. Silencing of SIK2 resulted in reduced GLUT4 (also known as SLC2A4) protein levels, whereas cells treated with CRTC2 or HDAC4 siRNA displayed increased levels of GLUT4. Overexpression or pharmacological inhibition of SIK2 resulted in increased and decreased glucose uptake, respectively. We also describe a SIK2-CRTC2-HDAC4 pathway and its regulation in human adipocytes, strengthening the physiological relevance of our findings. Collectively, we demonstrate that SIK2 acts directly on CRTC2, CRTC3 and HDAC4, and that the cAMP-PKA pathway reduces the interaction of SIK2 with CRTCs and PP2A. Downstream, SIK2 increases GLUT4 levels and glucose uptake in adipocytes.
  •  
4.
  • Henriksson, Emma, et al. (author)
  • The AMPK-related kinase SIK2 is regulated by cAMP via phosphorylation at Ser(358) in adipocytes
  • 2012
  • In: Biochemical Journal. - 0264-6021. ; 444, s. 503-514
  • Journal article (peer-reviewed)abstract
    • SIK2 (salt-inducible kinase 2) is a member of the AMPK (AMP-activated protein kinase) family of kinases and is highly expressed in adipocytes. We investigated the regulation of SIK2 in adipocytes in response to cellular stimuli with relevance for adipocyte function and/or AMPK signalling. None of the treatments, including insulin, cAMP inducers or AICAR (5-amino-4-imidazolecarboxamide riboside), affected SIK2 activity towards peptide or protein substrates in vitro. However, stimulation with the cAMP-elevating agent forskolin and the beta-adrenergic receptor agonist CL 316,243 resulted in a PKA (protein kinase A)-dependent phosphorylation and 14-3-3 binding of SIK2. Phosphopeptide mapping of SIK2 revealed several sites phosphorylated in response to cAMP induction, including Ser(358). Site-directed mutagenesis demonstrated that phosphorylation of See(358), but not the previously reported PKA site See(587), was required for 14-3-3 binding. Immunocytochemistry illustrated that the localization of exogenously expressed SIK2 in HEK (human embryonic kidney)-293 cells was exclusively cytosolic and remained unchanged after cAMP elevation. Fractionation of adipocytes, however, revealed a significant increase of wild-type, but not Ser358Ala, HA (haemagglutinin) SIK2 in the cytosol and a concomitant decrease in a particulate fraction after CL 316,243 treatment. This supports a phosphorylation-dependent relocalization in adipocytes. We hypothesize that regulation of SIK2 by cAMP could play a role for the critical effects of this second messenger on lipid metabolism in adipocytes.
  •  
5.
  • Hillier, Ladeana W, et al. (author)
  • Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution
  • 2004
  • In: Nature. - 0028-0836 .- 1476-4687. ; 432:7018, s. 695-716
  • Journal article (peer-reviewed)abstract
    • We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture.
  •  
6.
  • Zibrova, Darya, et al. (author)
  • GFAT1 phosphorylation by AMPK promotes VEGF-induced angiogenesis
  • 2017
  • In: Biochemical Journal. - 0264-6021. ; 474:6, s. 983-1001
  • Journal article (peer-reviewed)abstract
    • Activation of AMP-activated protein kinase (AMPK) in endothelial cells regulates energy homeostasis, stress protection and angiogenesis, but the underlying mechanisms are incompletely understood. Using a label-free phosphoproteomic analysis, we identified glutamine:fructose-6-phosphate amidotransferase 1 (GFAT1) as an AMPK substrate. GFAT1 is the rate-limiting enzyme in the hexosamine biosynthesis pathway (HBP) and as such controls the modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc). In the present study, we tested the hypothesis that AMPK controls O-GlcNAc levels and function of endothelial cells via GFAT1 phosphorylation using biochemical, pharmacological, genetic and in vitro angiogenesis approaches. Activation of AMPK in primary human endothelial cells by 5-aminoimidazole-4-carboxamide riboside (AICAR) or by vascular endothelial growth factor (VEGF) led to GFAT1 phosphorylation at serine 243. This effect was not seen when AMPK was down-regulated by siRNA. Upon AMPK activation, diminished GFAT activity and reduced O-GlcNAc levels were observed in endothelial cells containing wild-type (WT)-GFAT1 but not in cells expressing non-phosphorylatable S243A-GFAT1. Pharmacological inhibition or siRNA-mediated down-regulation of GFAT1 potentiated VEGF-induced sprouting, indicating that GFAT1 acts as a negative regulator of angiogenesis. In cells expressing S243A-GFAT1, VEGF-induced sprouting was reduced, suggesting that VEGF relieves the inhibitory action of GFAT1/HBP on angiogenesis via AMPK-mediated GFAT1 phosphorylation. Activation of GFAT1/HBP by high glucose led to impairment of vascular sprouting, whereas GFAT1 inhibition improved sprouting even if glucose level was high. Our findings provide novel mechanistic insights into the role of HBP in angiogenesis. They suggest that targeting AMPK in endothelium might help to ameliorate hyperglycaemia-induced vascular dysfunction associated with metabolic disorders.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view