SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "id:"swepub:oai:DiVA.org:liu-199677" "

Search: id:"swepub:oai:DiVA.org:liu-199677"

  • Result 1-1 of 1
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Sultana, Ayesha, et al. (author)
  • The Origin of Thermal Gradient-Induced Voltage in Polyelectrolytes
  • 2023
  • In: Small. - : WILEY-V C H VERLAG GMBH. - 1613-6810 .- 1613-6829.
  • Journal article (peer-reviewed)abstract
    • Ionic thermoelectric materials can generate large thermal voltages under temperature gradients while also being low-cost and environmentally friendly. Many electrolytes with large Seebeck coefficients are reported in recent years, however, the mechanism of the thermal voltage is remained elusive. In this work, three types of polyelectrolytes are studied with different cations and identified a significant contribution to their thermal voltage originating from a concentration gradient. This conclusion is based on studies of the loss and gain of water upon temperature changes, variations in conductivity with water content and temperature, and the voltages induced by changes in water content. The results are analyzed by the "hopping mode" dynamics of charge transport in electrolytes. The hydration of different cations influences the water concentration gradient, which affects the barrier height and ion-induced potential in the electrodes. This work shows that the hydro-voltage in ionic thermoelectric devices can be one order of magnitude larger than the contribution from thermodiffusion-induced potentials, and becomes the main contributor to energy harvesting when implemented into ionic thermoelectric supercapacitors. Together with the rationalized theoretical discussion, this work clarifies the mechanism of thermal voltages in electrolytes and provides a new path for the development of ionic thermoelectric materials. The thermal voltage of polyelectrolyte films largely depends on the water concentration gradient under a temperature difference, which can be optimized to promote the generated total voltage up to over 30 mV K-1.image
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-1 of 1
Type of publication
journal article (1)
Type of content
peer-reviewed (1)
Author/Editor
Crispin, Xavier (1)
Zhao, Dan (1)
Khan, Ziyauddin (1)
Jonsson, Magnus (1)
Liao, Mingna (1)
Sultana, Ayesha (1)
show more...
Würger, Alois (1)
show less...
University
Linköping University (1)
Language
English (1)
Research subject (UKÄ/SCB)
Natural sciences (1)
Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view