SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "id:"swepub:oai:gup.ub.gu.se/290395" "

Search: id:"swepub:oai:gup.ub.gu.se/290395"

  • Result 1-1 of 1
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Correa, R. E., et al. (author)
  • Submarine groundwater discharge and associated nutrient and carbon inputs into Sydney Harbour (Australia)
  • 2020
  • In: Journal of Hydrology. - : Elsevier BV. - 0022-1694. ; 580
  • Journal article (peer-reviewed)abstract
    • The effects of urbanization and scales on submarine groundwater discharge (SGD) remain poorly understood. Here, we used radium isotopes to quantify SGD-derived fluxes of nitrogen, phosphorus and dissolved organic carbon (DOC) into Sydney Harbour estuary, Australia. Sydney is the most populated city of Oceania, with several localised cases of historical groundwater pollution. We sampled top and bottom waters at the harbour scale (~20 km) and also at four small scale embayments (~2 km). A decreasing gradient in radium isotope concentrations from upstream to downstream was observed. Mass balances constructed with 224Ra, 223Ra, and 226Ra revealed that total SGD ranged from 42 to 121 × 104 m3 d−1 depending on assumptions and isotope. These fluxes were related mostly to saline SGD (recirculated seawater), and are equivalent to >60 times the mean annual freshwater river discharge into Sydney Harbour (0.68 × 104 m3 d−1). The estimated SGD rates (2.2 ± 1.5 cm d−1) were comparable to the global average radium-derived-SGD in other urban estuaries (~3.1 cm d−1). No obvious relationships were observed between SGD and scale in Sydney Harbour. However, higher SGD rates estimated for embayments closer to the ocean indicate that a combination of waves, tides and urbanization control SGD. SGD derived fluxes exceeded maximum riverine nutrient fluxes by a factor of 2 for DOC, 6 for PO4 3−, 40 for NH4 + and 1.3 for NOX. Previous work has suggested that nutrients enter Sydney Harbour primarily through rivers or stormwater following episodic rain events. Our results imply that diffuse saline SGD can also be an important but overlooked source of nutrients, potentially sustaining primary productivity in times of no river flow. © 2019 Elsevier B.V.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-1 of 1
Type of publication
journal article (1)
Type of content
peer-reviewed (1)
Author/Editor
Correa, R. E. (1)
Santos, Isaac R. (1)
Harrison, D (1)
Sanders, C. J. (1)
Conrad, S. R. (1)
Tait, D. R. (1)
show more...
Tucker, J. P. (1)
Reading, M. J. (1)
show less...
University
University of Gothenburg (1)
Language
English (1)
Research subject (UKÄ/SCB)
Natural sciences (1)
Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view