SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Krebs K.)) "

Search: (WFRF:(Krebs K.))

  • Result 11-20 of 79
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Aguilar, J. A., et al. (author)
  • Triboelectric backgrounds to radio-based polar ultra-high energy neutrino (UHEN) experiments
  • 2023
  • In: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 145
  • Journal article (peer-reviewed)abstract
    • In the hopes of observing the highest-energy neutrinos (E> 1 EeV) populating the Universe, both past (RICE, AURA, ANITA) and current (RNO-G, ARIANNA, ARA and TAROGE-M) polar-sited experiments exploit the impulsive radio emission produced by neutrino interactions. In such experiments, rare single event candidates must be unambiguously identified above backgrounds. Background rejection strategies to date primarily target thermal noise fluctuations and also impulsive radio-frequency signals of anthropogenic origin. In this paper, we consider the possibility that 'fake' neutrino signals may also be generated naturally via the `triboelectric effect' This broadly describes any process in which force applied at a boundary layer results in displacement of surface charge, leading to the production of an electrostatic potential difference AV. Wind blowing over granular surfaces such as snow can induce such a potential difference, with subsequent coronal discharge. Discharges over timescales as short as nanoseconds can then lead to radio-frequency emissions at characteristic MHz-GHz frequencies. Using data from various past (RICE, AURA, SATRA, ANITA) and current (RNO G, ARIANNA and ARA) neutrino experiments, we find evidence for such backgrounds, which are generally characterized by: (a) a threshold wind velocity which likely depends on the experimental trigger criteria and layout; for the experiments considered herein, this value is typically O(10 m/s), (b) frequency spectra generally shifted to the low-end of the frequency regime to which current radio experiments are typically sensitive (100-200 MHz), (c) for the strongest background signals, an apparent preference for discharges from above-surface structures, although the presence of more isotropic, lower amplitude triboelectric discharges cannot be excluded.
  •  
12.
  •  
13.
  •  
14.
  • Zohm, H., et al. (author)
  • Overview of ASDEX upgrade results in view of ITER and DEMO
  • 2024
  • In: Nuclear Fusion. - 0029-5515 .- 1741-4326. ; 64:11
  • Journal article (peer-reviewed)abstract
    • Experiments on ASDEX Upgrade (AUG) in 2021 and 2022 have addressed a number of critical issues for ITER and EU DEMO. A major objective of the AUG programme is to shed light on the underlying physics of confinement, stability, and plasma exhaust in order to allow reliable extrapolation of results obtained on present day machines to these reactor-grade devices. Concerning pedestal physics, the mitigation of edge localised modes (ELMs) using resonant magnetic perturbations (RMPs) was found to be consistent with a reduction of the linear peeling-ballooning stability threshold due to the helical deformation of the plasma. Conversely, ELM suppression by RMPs is ascribed to an increased pedestal transport that keeps the plasma away from this boundary. Candidates for this increased transport are locally enhanced turbulence and a locked magnetic island in the pedestal. The enhanced D-alpha (EDA) and quasi-continuous exhaust (QCE) regimes have been established as promising ELM-free scenarios. Here, the pressure gradient at the foot of the H-mode pedestal is reduced by a quasi-coherent mode, consistent with violation of the high-n ballooning mode stability limit there. This is suggestive that the EDA and QCE regimes have a common underlying physics origin. In the area of transport physics, full radius models for both L- and H-modes have been developed. These models predict energy confinement in AUG better than the commonly used global scaling laws, representing a large step towards the goal of predictive capability. A new momentum transport analysis framework has been developed that provides access to the intrinsic torque in the plasma core. In the field of exhaust, the X-Point Radiator (XPR), a cold and dense plasma region on closed flux surfaces close to the X-point, was described by an analytical model that provides an understanding of its formation as well as its stability, i.e., the conditions under which it transitions into a deleterious MARFE with the potential to result in a disruptive termination. With the XPR close to the divertor target, a new detached divertor concept, the compact radiative divertor, was developed. Here, the exhaust power is radiated before reaching the target, allowing close proximity of the X-point to the target. No limitations by the shallow field line angle due to the large flux expansion were observed, and sufficient compression of neutral density was demonstrated. With respect to the pumping of non-recycling impurities, the divertor enrichment was found to mainly depend on the ionisation energy of the impurity under consideration. In the area of MHD physics, analysis of the hot plasma core motion in sawtooth crashes showed good agreement with nonlinear 2-fluid simulations. This indicates that the fast reconnection observed in these events is adequately described including the pressure gradient and the electron inertia in the parallel Ohm’s law. Concerning disruption physics, a shattered pellet injection system was installed in collaboration with the ITER International Organisation. Thanks to the ability to vary the shard size distribution independently of the injection velocity, as well as its impurity admixture, it was possible to tailor the current quench rate, which is an important requirement for future large devices such as ITER. Progress was also made modelling the force reduction of VDEs induced by massive gas injection on AUG. The H-mode density limit was characterised in terms of safe operational space with a newly developed active feedback control method that allowed the stability boundary to be probed several times within a single discharge without inducing a disruptive termination. Regarding integrated operation scenarios, the role of density peaking in the confinement of the ITER baseline scenario (high plasma current) was clarified. The usual energy confinement scaling ITER98(p,y) does not capture this effect, but the more recent H20 scaling does, highlighting again the importance of developing adequate physics based models. Advanced tokamak scenarios, aiming at large non-inductive current fraction due to non-standard profiles of the safety factor in combination with high normalised plasma pressure were studied with a focus on their access conditions. A method to guide the approach of the targeted safety factor profiles was developed, and the conditions for achieving good confinement were clarified. Based on this, two types of advanced scenarios (‘hybrid’ and ‘elevated’ q-profile) were established on AUG and characterised concerning their plasma performance.
  •  
15.
  •  
16.
  • Solmi, M, et al. (author)
  • 2022
  • In: Journal of affective disorders. - : Elsevier BV. - 1573-2517 .- 0165-0327. ; 299, s. 367-376
  • Journal article (peer-reviewed)
  •  
17.
  • Aguilar, J. A., et al. (author)
  • Hardware Development for the Radio Neutrino Observatory in Greenland (RNO-G)
  • 2022
  • In: 37th International Cosmic Ray Conference, ICRC2021. - Trieste, Italy : Proceedings of Science.
  • Conference paper (peer-reviewed)abstract
    • The Radio Neutrino Observatory in Greenland (RNO-G) is designed to make the first observations of ultra-high energy neutrinos at energies above 10 PeV, playing a unique role in multi-messenger astrophysics as the world's largest in-ice Askaryan radio detection array. The experiment will be composed of 35 autonomous stations deployed over a 5 x 6 km grid near NSF Summit Station in Greenland. The electronics chain of each station is optimized for sensitivity and low power, incorporating 150 - 600 MHz RF antennas at both the surface and in ice boreholes, low-noise amplifiers, custom RF-over-fiber systems, and an FPGA-based phased array trigger. Each station will consume 25 W of power, allowing for a live time of 70% from a solar power system. The communications system is composed of a high-bandwidth LTE network and an ultra-low power LoRaWAN network. I will also present on the calibration and DAQ systems, as well as status of the first deployment of 10 stations in Summer 2021.
  •  
18.
  • Aguilar, J. A., et al. (author)
  • In situ, broadband measurement of the radio frequency attenuation length at Summit Station, Greenland
  • 2022
  • In: Journal of Glaciology. - : Cambridge University Press. - 0022-1430 .- 1727-5652. ; 68:272, s. 1234-1242
  • Journal article (peer-reviewed)abstract
    • Over the last 25 years, radiowave detection of neutrino-generated signals, using cold polar ice as the neutrino target, has emerged as perhaps the most promising technique for detection of extragalactic ultra-high energy neutrinos (corresponding to neutrino energies in excess of 0.01 Joules, or 10(17) electron volts). During the summer of 2021 and in tandem with the initial deployment of the Radio Neutrino Observatory in Greenland (RNO-G), we conducted radioglaciological measurements at Summit Station, Greenland to refine our understanding of the ice target. We report the result of one such measurement, the radio-frequency electric field attenuation length L-alpha. We find an approximately linear dependence of L-alpha on frequency with the best fit of the average field attenuation for the upper 1500 m of ice: < L-alpha > = ((1154 +/- 121) - (0.81 +/- 0.14) (v/MHz)) m for frequencies v is an element of [145 - 3501 MHz.
  •  
19.
  • Aguilar, J. A., et al. (author)
  • Reconstructing the neutrino energy for in-ice radio detectors
  • 2022
  • In: European Physical Journal C. - : Springer Nature. - 1434-6044 .- 1434-6052. ; 82:2
  • Journal article (peer-reviewed)abstract
    • Since summer 2021, the Radio Neutrino Observatory in Greenland (RNO-G) is searching for astrophysical neutrinos at energies > 10 PeV by detecting the radio emission from particle showers in the ice around Summit Station, Greenland. We present an extensive simulation study that shows how RNO-G will be able to measure the energy of such particle cascades, which will in turn be used to estimate the energy of the incoming neutrino that caused them. The location of the neutrino interaction is determined using the differences in arrival times between channels and the electric field of the radio signal is reconstructed using a novel approach based on Information Field Theory. Based on these properties, the shower energy can be estimated. We show that this method can achieve an uncertainty of 13% on the logarithm of the shower energy after modest quality cuts and estimate how this can constrain the energy of the neutrino. The method presented in this paper is applicable to all similar radio neutrino detectors, such as the proposed radio array of IceCube-Gen2.
  •  
20.
  • Phillips, Helen R. P., et al. (author)
  • Global distribution of earthworm diversity
  • 2019
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 366:6464, s. 480-
  • Journal article (peer-reviewed)abstract
    • Soil organisms, including earthworms, are a key component of terrestrial ecosystems. However, little is known about their diversity, their distribution, and the threats affecting them. We compiled a global dataset of sampled earthworm communities from 6928 sites in 57 countries as a basis for predicting patterns in earthworm diversity, abundance, and biomass. We found that local species richness and abundance typically peaked at higher latitudes, displaying patterns opposite to those observed in aboveground organisms. However, high species dissimilarity across tropical locations may cause diversity across the entirety of the tropics to be higher than elsewhere. Climate variables were found to be more important in shaping earthworm communities than soil properties or habitat cover. These findings suggest that climate change may have serious implications for earthworm communities and for the functions they provide.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-20 of 79
Type of publication
journal article (72)
conference paper (7)
Type of content
peer-reviewed (70)
other academic/artistic (9)
Author/Editor
Mataix-Cols, D (13)
Liu, B. (7)
Saito, T (7)
Mazza, G. (7)
Schmidt, C. (7)
Breen, G (7)
show more...
Korcyl, K. (6)
Pantea, D. (6)
Peters, K. (6)
Hu, Q. (6)
Kumar, A. (6)
Liu, Z. (6)
Hayrapetyan, A. (6)
Vasiliev, A. (6)
Gianotti, P. (6)
De Remigis, P. (6)
Idzik, M. (6)
Wheadon, R. (6)
Andreassen, OA (6)
Skachkov, N. B. (6)
Ketzer, B. (6)
Levin, A (6)
Seth, K (6)
Liang, Y (6)
..., Wiedner U. (6)
Kupść, A. (6)
Wolke, Magnus (6)
Johansson, Tord (6)
Albrecht, M. (6)
Dbeyssi, A. (6)
Denig, A. (6)
Feldbauer, F. (6)
Fritsch, M. (6)
Held, T. (6)
Holtmann, T. (6)
Kavatsyuk, M. (6)
Kliemt, R. (6)
Kopf, B. (6)
Nerling, F. (6)
Schnier, C. (6)
Spataro, S. (6)
Khoukaz, A. (6)
Kuhlmann, M. (6)
Prencipe, E. (6)
Iazzi, F (6)
Sfienti, C (6)
Fiutowski, T. (6)
Swientek, K. (6)
Deppe, H (6)
Fink, M (6)
show less...
University
Karolinska Institutet (53)
Uppsala University (18)
Lund University (12)
Stockholm University (11)
Umeå University (7)
Royal Institute of Technology (7)
show more...
University of Gothenburg (6)
Chalmers University of Technology (3)
Linköping University (2)
Swedish University of Agricultural Sciences (2)
Kristianstad University College (1)
Örebro University (1)
show less...
Language
English (79)
Research subject (UKÄ/SCB)
Natural sciences (22)
Medical and Health Sciences (14)
Engineering and Technology (2)
Agricultural Sciences (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view