SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Björnsson Claes Ingvar) "

Search: WFRF:(Björnsson Claes Ingvar)

  • Result 11-20 of 24
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Björnsson, Claes-Ingvar (author)
  • MULTIPLE INVERSE COMPTON SCATTERINGS AND THE BLAZAR SEQUENCE
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 723:1, s. 417-424
  • Journal article (peer-reviewed)abstract
    • The high frequency component in blazars is thought to be due to inverse Compton scattered radiation. Recent observations by Fermi-LAT are used to evaluate the details of the scattering process. A comparison is made between the usually assumed single scattering scenario and one in which multiple scatterings are energetically important. In the latter case, most of the radiation is emitted in the Klein-Nishina limit. It is argued that several of the observed correlations defining the blazar sequence are most easily understood in a multiple scattering scenario. Observations indicate also that, in such a scenario, the blazar sequence is primarily governed by the energy density of relativistic electrons rather than that of the seed photons. The pronounced X-ray minimum in the spectral energy distribution often observed in the most luminous blazars is discussed. It is shown how this feature can be accounted for in a multiple scattering scenario by an extension of standard one-zone models.
  •  
12.
  • Björnsson, Claes-Ingvar (author)
  • Radio Spectra of SN 2020oi : Effects of Radiative Cooling on the Deduced Source Properties
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 936:2
  • Journal article (peer-reviewed)abstract
    • Observations of radiative cooling in a synchrotron source offer a possibility to further constrain its properties. Inverse Compton cooling is indicated in the radio spectra during the early phases of SN 2020oi. It is shown that contrary to previous claims, observations are consistent with equipartition between relativistic electrons and magnetic field as well as a constant mass-loss rate of the progenitor star prior to the supernova explosion. The reason for this difference is the need to include cooling directly in the fitting procedure rather than estimating its effects afterward. It is emphasized that the inferred properties of the supernova ejecta are sensitive to the time evolution of the synchrotron self-absorption frequency; hence, great care should be taken when modeling spectra for which cooling and/or inhomogeneities are indicated. Furthermore, it is noted that the energies of the relativistic electrons in the radio emission regions in supernovae are likely too low for first-order Fermi acceleration to be effective.
  •  
13.
  • Björnsson, Claes-Ingvar, et al. (author)
  • The location of the Crab pulsar emission region : restrictions on synchrotron emission models
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 516, s. A65-
  • Journal article (peer-reviewed)abstract
    • Recent observations of the Crab pulsar show no evidence of a spectral break in the infrared regime. It is argued that the observations are consistent with a power-law spectrum in the whole observable infrared-optical range. This is taken as the starting point for evaluating of how self-consistent incoherent synchrotron models fare in a comparison with observations. Inclusion of synchrotron self-absorption proves important as does the restriction on the observed size of the emission region imposed by the relativistic beaming thought to define the pulse profile. It is shown that the observations can be used to derive two independent constraints on the distance from the neutron star to the emission region; in addition to a direct lower limit, an indirect measure is obtained from an upper limit to the magnetic field strength. Both of these limits indicate that the emission region is located at a distance considerably greater than the light cylinder radius. The implications of this result are discussed, and it is emphasized that, for standard incoherent synchrotron models to fit inside the light cylinder, rather special physical conditions need to be invoked.
  •  
14.
  • Borgonovo, Luis, 1956- (author)
  • Spectral and Temporal Studies of Gamma-Ray Bursts
  • 2007
  • Doctoral thesis (other academic/artistic)abstract
    • Gamma-ray bursts (GRBs) are sporadic flashes of light observed primarily in the gamma-ray band. Being the brightest explosions in the Universe since its birth, they are at present also the furthest astronomical sources detected. Since their serendipitous discovery in the late 1960s the study of GRBs has grown into one of the most active fields in astrophysics with ramifications in many other scientific areas.Despite intense studies many of the basic questions about the nature of GRBs remain unanswered. Long duration bursts are believed to be the result of ultra-relativistic outflows associated with the collapse of very massive stars. The mechanisms responsible for the emission, the geometry of the emitter, and the radiative processes involved are still a matter of research. Common multi-pulse bursts display a spectral evolution as complex as their light curves. However, it is unclear what produces the observed variability. The works presented in this thesis aim to build the necessary base to answer these open questions.A characterization of the spectral evolution is presented (based on time-resolved spectral analysis) that provides insight into the underlying emission processes and imposes severe constraints on current physical models (Paper I).We report the results of a multi-variate analysis on a broad range of GRB physical parameters covering temporal and spectral properties. Empirical relations were found that indicate a self-similar property in burst light curves and a luminosity correlation with potential use as a distance indicator (Paper II).Determining the relevant timescales of any astronomical phenomenon is essential to understand its associated physical processes. Linear methods in time-series analysis are powerful tools for the researcher that can provide insight into the underlying dynamics of the studied systems. For the first time these methods were used on GRB light curves correcting for cosmic time dilation effects which revealed two classes of variability. The possible origin of these classes is discussed (Papers III & IV).
  •  
15.
  •  
16.
  • Borgonovo, Luis, et al. (author)
  • Statistical Analysis of BATSE Gamma-Ray Bursts: Self-Similarity and the Amati Relation
  • 2006
  • In: The Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 652:2, s. 1423-1435
  • Journal article (peer-reviewed)abstract
    • The statistical properties of a complete, flux-limited sample of 197 long gamma-ray bursts (GRBs) detected by BATSE are studied. In order to bring forth their main characteristics, care was taken to define a representative set of 10 parameters. A multivariate analysis gives that ~70% of the total variation in parameter values is driven by only three principal components. The variation of the temporal parameters is clearly distinct from that of the spectral ones. A close correlation is found between the half-width of the autocorrelation function (τ) and the emission time (T50) most importantly, this correlation is self-similar in the sense that the mean values and dispersions of both τ and T50 scale with the duration of the burst (T90). It is shown that the Amati relation can be derived from the sample and that the scatter around this relation is correlated with the value of τ. Hence, τ has a role similar to that of the break in the afterglow light curve (tb) in the Ghirlanda-relation. In the standard GRB-scenario, the close relation between a global parameter (tb) and a local one (τ) indicates that some of the jet-properties do not vary much for different lines of sight. Finally, it is argued that the basic temporal and spectral properties are associated with individual pulses, while the overall properties of a burst is determined mainly by the number of pulses.
  •  
17.
  • Chandra, Poonam, et al. (author)
  • Type Ib Supernova Master OT J120451.50+265946.6 : Radio-emitting Shock with Inhomogeneities Crossing through a Dense Shell
  • 2019
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 877:2
  • Journal article (peer-reviewed)abstract
    • We present radio observations of Type Ib supernova (SN) Master OT J120451.50+265946.6. Our low-frequency Giant Metrewave Radio Telescope (GMRT) data, taken when the SN was in the optically thick phase for observed frequencies, reveal inhomogeneities in the structure of the radio-emitting region. The high-frequency Karl G. Jansky Very Large Array data indicate that the shock is crossing through a dense shell between similar to 47 and similar to 87 days. The data >= 100 days onward are reasonably well fit with the inhomogeneous synchrotron self-absorption model. Our model predicts that the inhomogeneities should smooth out at late times. Low-frequency GMRT observations at late epochs will test this prediction. Our findings suggest the importance of obtaining well-sampled wide-band radio data in order to understand the intricate nature of the radio emission from young supernovae.
  •  
18.
  • Kamae, Tuneyoshi, et al. (author)
  • PoGOLite - A high sensitivity balloon-borne soft gamma-ray polarimeter
  • 2008
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 30:2, s. 72-84
  • Journal article (peer-reviewed)abstract
    • We describe a new balloon-borne instrument (PoGOLite) capable of detecting 10% polarisation from 200 mCrab point-like sources between 25 and 80 keV in one 6-h flight. Polarisation measurements in the soft gamma-ray band are expected to provide a powerful probe into high energy emission mechanisms as well as the distribution of magnetic fields, radiation fields and interstellar matter. Synchrotron radiation, inverse Compton scattering and propagation through high magnetic fields are likely to produce high degrees of polarisation in the energy band of the instrument. We demonstrate, through tests at accelerators, with radioactive sources and through computer simulations, that PoGOLite will be able to detect degrees of polarisation as predicted by models for several classes of high energy sources. At present, only exploratory polarisation measurements have been carried out in the soft gamma-ray band. Reduction of the large background produced by cosmic-ray particles while securing a large effective area has been the greatest challenge. PoGOLite uses Compton scattering and photo-absorption in an array of 217 well-type phoswich detector cells made of plastic and BGO scintillators surrounded by a BGO anticoincidence shield and a thick polyethylene neutron shield. The narrow Held of view (FWHM = 1.25 msr, 2.0 deg x 2.0 deg) obtained with detector cells and the use of thick background shields warrant a large effective area for polarisation measurements (similar to 228 cm(2) at E = 40 keV) without sacrificing the signal-to-noise ratio. Simulation studies for an atmospheric overburden of 3-4 g/cm(2) indicate that neutrons and gamma-rays entering the PDC assembly through the shields are dominant backgrounds. Off-line event selection based on recorded phototube waveforms and Compton kinematics reduce the background to that expected for a similar to 100 mCrab source between 25 and 50 keV. A 6-h observation of the Crab pulsar will differentiate between the Polar Cap/Slot Gap, Outer Gap, and Caustic models with greater than 5 sigma significance; and also cleanly identify the Compton reflection component in the Cygnus X-1 hard state. Long-duration flights will measure the dependence of the polarisation across the cyclotron absorption line in Hercules X-1. A scaled-down instrument will be flown as a pathfinder mission from the north of Sweden in 2010. The first science flight is planned to take place shortly thereafter. 
  •  
19.
  • Kanai, Y., et al. (author)
  • Beam test of a prototype phoswich detector assembly for the PoGOLite astronomical soft gamma-ray polarimeter
  • 2007
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 570:1, s. 61-71
  • Journal article (peer-reviewed)abstract
    • We report about the beam test on a prototype of the balloon-based astronomical soft gamma-ray polarimeter, PoGOLite (Polarized Gamma-ray Observer-Light Version) conducted at KEK Photon Factory, a synchrotron radiation facility in Japan. The synchrotron beam was set at 30, 50, and 70 keV and its polarization was monitored by a calibrated polarimeter. The goal of the experiment was to validate the flight design of the polarimeter. PoGOLite is designed to measure polarization by detecting a Compton scattering and the subsequent photo-absorption in an array of 217 well-type phoswich detector cells (PDCs). The test setup included a first flight model PDC and a front-end electronics to select and reconstruct valid Compton scattering events. The experiment has verified that the flight PDC can detect recoil electrons and select valid Compton scattering events down to 30 keV from background. The measure azimuthal modulations (34.4%, 35.8% and 37.2% at 30, 50, and 70 keV, respectively) agreed within 10% (relative) with the predictions by Geant4 implemented with dependence on the initial and final photon polarizations.
  •  
20.
  • Lundqvist, Natalia, 1974-, et al. (author)
  • Spectral evolution and polarization of variable structures in the pulsar wind nebula of PSR B0540-69.3
  • 2011
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 413:1, s. 611-627
  • Journal article (peer-reviewed)abstract
    • We present high spatial resolution optical imaging and polarization observations of the PSR B0540-69.3 and its highly dynamical pulsar wind nebula (PWN) performed with Hubble Space Telescope, and compare them with X-ray data obtained with the Chandra X-ray Observatory. In particular, we have studied the bright region south-west of the pulsar where a bright 'blob' is seen in 1999. In a recent paper by De Luca et al. it was argued that the 'blob' moves away from the pulsar at high speed. We show that it may instead be a result of local energy deposition around 1999, and that the emission from this then faded away rather than moved outward. Polarization data from 2007 show that the polarization properties show dramatic spatial variations at the 1999 blob position arguing for a local process. Several other positions along the pulsar-'blob' orientation show similar changes in polarization, indicating previous recent local energy depositions. In X-rays, the spectrum steepens away from the 'blob' position, faster orthogonal to the pulsar-'blob' direction than along this axis of orientation. This could indicate that the pulsar-'blob' orientation is an axis along where energy in the PWN is mainly injected, and that this is then mediated to the filaments in the PWN by shocks. We highlight this by constructing an [S ii]-to-[O iii]-ratio map, and comparing this to optical continuum and X-ray emission maps. We argue, through modelling, that the high [S ii]/[O iii] ratio is not due to time-dependent photoionization caused by possible rapid X-ray emission variations in the 'blob' region. We have also created a multiwavelength energy spectrum for the 'blob' position showing that one can, to within 2 Sigma, connect the optical and X-ray emission by a single power law. The slope of that power law (defined from ) would be alpha(nu) = 0.74 +/- 0.03, which is marginally different from the X-ray spectral slope alone with alpha(nu) = 0.65 +/- 0.03. A single power law for most of the PWN is, however, not be possible. We obtain best power-law fits for the X-ray spectrum if we include 'extra' oxygen, in addition to the oxygen column density in the interstellar gas of the Large Magellanic Cloud and the Milky Way. This oxygen is most naturally explained by the oxygen-rich ejecta of the supernova remnant. The oxygen needed likely places the progenitor mass in the 20-25 M(circle dot) range, i.e. in the upper mass range for progenitors of Type IIP supernovae.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-20 of 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view