SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Comas D.) "

Search: WFRF:(Comas D.)

  • Result 11-18 of 18
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Enattah, Nabil Sabri, et al. (author)
  • Evidence of still-ongoing convergence evolution of the lactase persistence T-13910 alleles in humans
  • 2007
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 81:3, s. 615-625
  • Journal article (peer-reviewed)abstract
    • A single-nucleotide variant, C/T-13910, located 14 kb upstream of the lactase gene (LCT), has been shown to be completely correlated with lactase persistence (LP) in northern Europeans. Here, we analyzed the background of the alleles carrying the critical variant in 1,611 DNA samples from 37 populations. Our data show that the T-13910 variant is found on two different, highly divergent haplotype backgrounds in the global populations. The first is the most common LP haplotype (LP H98) present in all populations analyzed, whereas the others (LP H8-H12), which originate from the same ancestral allelic haplotype, are found in geographically restricted populations living west of the Urals and north of the Caucasus. The global distribution pattern of LP T-13910 H98 supports the Caucasian origin of this allele. Age estimates based on different mathematical models show that the common LP T-13910 H98 allele (similar to 5,000-12,000 years old) is relatively older than the other geographically restricted LP alleles (similar to 1,400-3,000 years old). Our data about global allelic haplotypes of the lactose-tolerance variant imply that the T-13910 allele has been independently introduced more than once and that there is a still-ongoing process of convergent evolution of the LP alleles in humans.
  •  
12.
  • Grigorescu, F, et al. (author)
  • HAPLOGENDIS INITIATIVE - SICA
  • 2009
  • In: ACTA ENDOCRINOLOGICA-BUCHAREST. - : ACTA Endocrinologica Foundation. - 1841-0987 .- 1843-066X. ; 5:1, s. 143-148
  • Journal article (other academic/artistic)
  •  
13.
  • Kiefer, M., et al. (author)
  • The SPARC water vapour assessment II: biases and drifts of water vapour satellite data records with respect to frost point hygrometer records
  • 2023
  • In: Atmospheric Measurement Techniques. - 1867-1381 .- 1867-8548. ; 16:19, s. 4589-4642
  • Journal article (peer-reviewed)abstract
    • Satellite data records of stratospheric water vapour have been compared to balloon-borne frost point hygrometer (FP) profiles that are coincident in space and time. The satellite data records of 15 different instruments cover water vapour data available from January 2000 through December 2016. The hygrometer data are from 27 stations all over the world in the same period. For the comparison, real or constructed averaging kernels have been applied to the hygrometer profiles to adjust them to the measurement characteristics of the satellite instruments. For bias evaluation, we have compared satellite profiles averaged over the available temporal coverage to the means of coincident FP profiles for individual stations. For drift determinations, we analysed time series of relative differences between spatiotemporally coincident satellite and hygrometer profiles at individual stations. In a synopsis we have also calculated the mean biases and drifts (and their respective uncertainties) for each satellite record over all applicable hygrometer stations in three altitude ranges (10-30 hPa, 30-100 hPa, and 100 hPa to tropopause). Most of the satellite data have biases <10 % and average drifts <1 % yr-1 in at least one of the respective altitude ranges. Virtually all biases are significant in the sense that their uncertainty range in terms of twice the standard error of the mean does not include zero. Statistically significant drifts (95 % confidence) are detected for 35 % of the ≈ 1200 time series of relative differences between satellites and hygrometers.
  •  
14.
  • Lao, O., et al. (author)
  • Correlation between Genetic and Geographic Structure in Europe
  • 2008
  • In: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 18:16, s. 1241-1248
  • Journal article (peer-reviewed)abstract
    • Understanding the genetic structure of the European population is important, not only from a historical perspective, but also for the appropriate design and interpretation of genetic epidemiological studies. Previous population genetic analyses with autosomal markers in Europe either had a wide geographic but narrow genomic coverage [1, 2], or vice versa [3-6]. We therefore investigated Affymetrix GeneChip 500K genotype data from 2,514 individuals belonging to 23 different subpopulations, widely spread over Europe. Although we found only a low level of genetic differentiation between subpopulations, the existing differences were characterized by a strong continent-wide correlation between geographic and genetic distance. Furthermore, mean heterozygosity was larger, and mean linkage disequilibrium smaller, in southern as compared to northern Europe. Both parameters clearly showed a clinal distribution that provided evidence for a spatial continuity of genetic diversity in Europe. Our comprehensive genetic data are thus compatible with expectations based upon European population history, including the hypotheses of a south-north expansion and/or a larger effective population size in southern than in northern Europe. By including the widely used CEPH from Utah (CEU) samples into our analysis, we could show that these individuals represent northern and western Europeans reasonably well, thereby confirming their assumed regional ancestry. © 2008 Elsevier Ltd. All rights reserved.
  •  
15.
  • Lossow, Stefan, 1977, et al. (author)
  • The SPARC water vapour assessment II: Profile-to-profile comparisons of stratospheric and lower mesospheric water vapour data sets obtained from satellites
  • 2019
  • In: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 12:5, s. 2693-2732
  • Journal article (peer-reviewed)abstract
    • This work is distributed under the Creative Commons Attribution 4.0 License. Within the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II), profile-to-profile comparisons of stratospheric and lower mesospheric water vapour were performed by considering 33 data sets derived from satellite observations of 15 different instruments. These comparisons aimed to provide a picture of the typical biases and drifts in the observational database and to identify data-set-specific problems. The observational database typically exhibits the largest biases below 70 hPa, both in absolute and relative terms. The smallest biases are often found between 50 and 5 hPa. Typically, they range from 0.25 to 0.5 ppmv (5 % to 10 %) in this altitude region, based on the 50 % percentile over the different comparison results. Higher up, the biases increase with altitude overall but this general behaviour is accompanied by considerable variations. Characteristic values vary between 0.3 and 1 ppmv (4 % to 20 %). Obvious data-set-specific bias issues are found for a number of data sets. In our work we performed a drift analysis for data sets overlapping for a period of at least 36 months. This assessment shows a wide range of drifts among the different data sets that are statistically significant at the 2 σ uncertainty level. In general, the smallest drifts are found in the altitude range between about 30 and 10 hPa. Histograms considering results from all altitudes indicate the largest occurrence for drifts between 0.05 and 0.3 ppmv decade-1. Comparisons of our drift estimates to those derived from comparisons of zonal mean time series only exhibit statistically significant differences in slightly more than 3 % of the comparisons. Hence, drift estimates from profile-to-profile and zonal mean time series comparisons are largely interchangeable. As for the biases, a number of data sets exhibit prominent drift issues. In our analyses we found that the large number of MIPAS data sets included in the assessment affects our general results as well as the bias summaries we provide for the individual data sets. This is because these data sets exhibit a relative similarity with respect to the remaining data sets, despite the fact that they are based on different measurement modes and different processors implementing different retrieval choices. Because of that, we have by default considered an aggregation of the comparison results obtained from MIPAS data sets. Results without this aggregation are provided on multiple occasions to characterise the effects due to the numerous MIPAS data sets. Among other effects, they cause a reduction of the typical biases in the observational database.
  •  
16.
  • Remsberg, E.E., et al. (author)
  • Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER
  • 2008
  • In: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 113:D17
  • Journal article (peer-reviewed)abstract
    • The quality of the retrieved temperature-versus-pressure (or T(p)) profiles is described for the middle atmosphere for the publicly available Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) Version 1.07 (V1.07) data set. The primary sources of systematic error for the SABER results below about 70 km are (1) errors in the measured radiances, (2) biases in the forward model, and (3) uncertainties in the corrections for ozone and in the determination of the reference pressure for the retrieved profiles. Comparisons with other correlative data sets indicate that SABER T(p) is too high by 1–3 K in the lower stratosphere but then too low by 1 K near the stratopause and by 2 K in the middle mesosphere. There is little difference between the local thermodynamic equilibrium (LTE) algorithm results below about 70 km from V1.07 and V1.06, but there are substantial improvements/differences for the non-LTE results of V1.07 for the upper mesosphere and lower thermosphere (UMLT) region. In particular, the V1.07 algorithm uses monthly, diurnally averaged CO2 profiles versus latitude from the Whole Atmosphere Community Climate Model. This change has improved the consistency of the character of the tides in its kinetic temperature (Tk). The Tk profiles agree with UMLT values obtained from ground-based measurements of column-averaged OH and O2 emissions and of the Na lidar returns, at least within their mutual uncertainties. SABER Tk values obtained near the mesopause with its daytime algorithm also agree well with the falling sphere climatology at high northern latitudes in summer. It is concluded that the SABER data set can be the basis for improved, diurnal-to-interannual-scale temperatures for the middle atmosphere and especially for its UMLT region.
  •  
17.
  •  
18.
  • Vandaele, Ann Carine, et al. (author)
  • Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter
  • 2019
  • In: Nature. - : Springer. - 1476-4687 .- 1476-4687 .- 0028-0836. ; 568:7753, s. 521-525
  • Journal article (other academic/artistic)abstract
    • Global dust storms on Mars are rare1,2 but can affect the Martian atmosphere for several months. They can cause changes in atmospheric dynamics and inflation of the atmosphere3, primarily owing to solar heating of the dust3. In turn, changes in atmospheric dynamics can affect the distribution of atmospheric water vapour, with potential implications for the atmospheric photochemistry and climate on Mars4. Recent observations of the water vapour abundance in the Martian atmosphere during dust storm conditions revealed a high-altitude increase in atmospheric water vapour that was more pronounced at high northern latitudes5,6, as well as a decrease in the water column at low latitudes7,8. Here we present concurrent, high-resolution measurements of dust, water and semiheavy water (HDO) at the onset of a global dust storm, obtained by the NOMAD and ACS instruments onboard the ExoMars Trace Gas Orbiter. We report the vertical distribution of the HDO/H2O ratio (D/H) from the planetary boundary layer up to an altitude of 80 kilometres. Our findings suggest that before the onset of the dust storm, HDO abundances were reduced to levels below detectability at altitudes above 40 kilometres. This decrease in HDO coincided with the presence of water-ice clouds. During the storm, an increase in the abundance of H2O and HDO was observed at altitudes between 40 and 80 kilometres. We propose that these increased abundances may be the result of warmer temperatures during the dust storm causing stronger atmospheric circulation and preventing ice cloud formation, which may confine water vapour to lower altitudes through gravitational fall and subsequent sublimation of ice crystals3. The observed changes in H2O and HDO abundance occurred within a few days during the development of the dust storm, suggesting a fast impact of dust storms on the Martian atmosphere.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-18 of 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view