SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hughes Arwel) "

Search: WFRF:(Hughes Arwel)

  • Result 11-15 of 15
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Jones, Stephanie H., et al. (author)
  • Aqueous Radical Initiated Oxidation of an Organic Monolayer at the Air-Water Interface as a Proxy for Thin Films on Atmospheric Aerosol Studied with Neutron Reflectometry
  • 2023
  • In: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 127:42, s. 8922-8934
  • Journal article (peer-reviewed)abstract
    • Neutron reflectometry has been used to study the radical initiated oxidation of a monolayer of the lipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) at the air–solution interface by aqueous-phase hydroxyl, sulfate, and nitrate radicals. The oxidation of organic films at the surface of atmospheric aqueous aerosols can influence the optical properties of the aerosol and consequently can impact Earth’s radiative balance and contribute to modern climate change. The amount of material at the air–solution interface was found to decrease on exposure to aqueous-phase radicals which was consistent with a multistep degradation mechanism, i.e., the products of reaction of the DSPC film with aqueous radicals were also surface active. The multistep degradation mechanism suggests that lipid molecules in the thin film degrade to form progressively shorter chain surface active products and several reactive steps are required to remove the film from the air–solution interface. Bimolecular rate constants for oxidation via the aqueous phase OH radical cluster around 1010 dm3 mol–1 s–1. Calculations to determine the film lifetime indicate that it will take ∼4–5 days for the film to degrade to 50% of its initial amount in the atmosphere, and therefore attack by aqueous radicals on organic films could be atmospherically important relative to typical atmospheric aerosol lifetimes.
  •  
12.
  • King, Martin D., et al. (author)
  • Oxidation of oleic acid at the air-water interface and its potential effects on cloud critical supersaturations
  • 2009
  • In: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 11:35, s. 7699-7707
  • Journal article (peer-reviewed)abstract
    • The oxidation of organic films on cloud condensation nuclei has the potential to affect climate and precipitation events. In this work we present a study of the oxidation of a monolayer of deuterated oleic acid (cis-9-octadecenoic acid) at the air-water interface by ozone to determine if oxidation removes the organic film or replaces it with a product film. A range of different aqueous sub-phases were studied. The surface excess of deuterated material was followed by neutron reflection whilst the surface pressure was followed using a Wilhelmy plate. The neutron reflection data reveal that approximately half the organic material remains at the air-water interface following the oxidation of oleic acid by ozone, thus cleavage of the double bond by ozone creates one surface active species and one species that partitions to the bulk (or gas) phase. The most probable products, produced with a yield of similar to(87 +/- 14)%, are nonanoic acid, which remains at the interface, and azelaic acid (nonanedioic acid), which dissolves into the bulk solution. We also report a surface bimolecular rate constant for the reaction between ozone and oleic acid of (7.3 +/- 0.9) x 10(-11) cm(2) molecule s(-1). The rate constant and product yield are not affected by the solution sub-phase. An uptake coefficient of ozone on the oleic acid monolayer of similar to 4 x 10(-6) is estimated from our results. A simple Kohler analysis demonstrates that the oxidation of oleic acid by ozone on an atmospheric aerosol will lower the critical supersaturation needed for cloud droplet formation. We calculate an atmospheric chemical lifetime of oleic acid of 1.3 hours, significantly longer than laboratory studies on pure oleic acid particles suggest, but more consistent with field studies reporting oleic acid present in aged atmospheric aerosol.
  •  
13.
  • King, Martin D., et al. (author)
  • The reaction of oleic acid monolayers with gas-phase ozone at the air water interface : the effect of sub-phase viscosity, and inert secondary components
  • 2020
  • In: Physical Chemistry, Chemical Physics - PCCP. - : ROYAL SOC CHEMISTRY. - 1463-9076 .- 1463-9084. ; 22:48, s. 28032-28044
  • Journal article (peer-reviewed)abstract
    • Organic films that form on atmospheric particulate matter change the optical and cloud condensation nucleation properties of the particulate matter and consequently have implications for modern climate and climate models. The organic films are subject to attack from gas-phase oxidants present in ambient air. Here we revisit in greater detail the oxidation of a monolayer of oleic acid by gas-phase ozone at the air-water interface as this provides a model system for the oxidation reactions that occur at the air-water interface of aqueous atmospheric aerosol. Experiments were performed on monolayers of oleic acid at the air-liquid interface at atmospherically relevant ozone concentrations to investigate if the viscosity of the sub-phase influences the rate of the reaction and to determine the effect of the presence of a second component within the monolayer, stearic acid, which is generally considered to be non-reactive towards ozone, on the reaction kinetics as determined by neutron reflectometry measurements. Atmospheric aerosol can be extremely viscous. The kinetics of the reaction were found to be independent of the viscosity of the sub-phase below the monolayer over a range of moderate viscosities, eta/eta water = 1.0-7.2, demonstrating no involvement of aqueous sub-phase oxidants in the rate determining step. The kinetics of oxidation of monolayers of pure oleic acid were found to depend on the surface coverage with different behaviour observed above and below a surface coverage of oleic acid of similar to 1 x 10(18) molecule m(-2). Atmospheric aerosol are typically complex mixtures, and the presence of an additional compound in the monolayer that is inert to direct ozone oxidation, stearic acid, did not significantly change the reaction kinetics. It is demonstrated that oleic acid monolayers at the air-water interface do not leave any detectable material at the air-water interface, contradicting the previous work published in this journal which the authors now believe to be erroneous. The combined results presented here indicate that the kinetics, and thus the atmospheric chemical lifetime for unsaturated surface active materials at the air-water interface to loss by reaction with gas-phase ozone, can be considered to be independent of other materials present at either the air-water interface or in the aqueous sub-phase.
  •  
14.
  • Michanek, Agnes, et al. (author)
  • RNA and DNA Association to Zwitterionic and Charged Monolayers at the Air-Liquid Interface
  • 2012
  • In: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 28:25, s. 9621-9633
  • Journal article (peer-reviewed)abstract
    • The objective of this work is to establish under which conditions short RNA molecules (similar to miRNA) associate with zwitterionic phospholipids and how this differs from the association with cationic surfactants. We study how the base pairing (i.e., single stranded versus double stranded nucleic acids) and the length of the nucleic acid and the charge of the lipid/surfactant monolayer affect the association behavior. For this purpose, we study the adsorption of nucleic acids to monolayers composed of dipalmitoyl phosphatidylcholine (DPPC) or dioctadecyl-dimethyl-ammoniumbromide (DODAB) using the surface film balance, neutron reflectometry, and fluorescence microscopy. The monolayer studies with the surface film balance suggested that short single-stranded ssRNA associates with liquid expanded zwitterionic phospholipid monolayers, whereas less or no association is detected for double-stranded dsRNA and dsDNA In order to quantify the interaction and to determine the location of the nucleic acid in the lipid/surfactant monolayer we performed neutron reflectometry measurements. It was shown that ssRNA adsorbs to and penetrates the liquid expanded monolayers, whereas there is no penetration of nucleic acids into the liquid condensed monolayer. No adsorption was detected for dsDNA to zwitterionic monolayers. On the basis of these results, we propose that the association is driven by the hydrophobic interactions between the exposed hydrophobic bases of the ssRNA and the hydrocarbon chains of the phospholipids. The addition of ssRNA also influences domain formation in the DPPC monolayer, leading to fractal-like interconnected domains. The experimental results are discussed in terms of the implication for biological processes and new leads for applications in medicine and biotechnology.
  •  
15.
  • Nouhi, Shirin, et al. (author)
  • Interactions of perfluoroalkyl substances with a phospholipid bilayer studied by neutron reflectometry
  • 2018
  • In: Journal of Colloid and Interface Science. - : Elsevier. - 0021-9797 .- 1095-7103. ; 511, s. 474-481
  • Journal article (peer-reviewed)abstract
    • The interactions between perfluoroalkyl substances (PFASs) and a phospholipid bilayer (1,2-dimyristoyl-sn-glycero-3-phosphocholine) were investigated at the molecular level using neutron reflectometry. Representative PFASs with different chain length and functional groups were selected in this study including: perfluorobutane sulfonate (PFBS), perfluorohexanoate (PFHxA), perfluorohexane sulfonate (PFHxS), perfluorononanoate (PFNA), perfluorooctane sulfonate (PFOS), and perfluorooctane sulfonamide (FOSA). All PFASs were found to interact with the bilayer by incorporation, indicating PFAS ability to accumulate once ingested or taken up by organisms. The interactions were observed to increase with chain length and vary with the functional group as SO2NH2" role="presentation">(FOSA) > SO2O−" role="presentation">(PFOS) > COO−(PFNA). The PFAS hydrophobicity, which is strongly correlated with perfluorocarbon chain length, was found to strongly influence the interactions. Longer chain PFASs showed higher tendency to penetrate into the bilayer compared to the short-chain compounds. The incorporated PFASs could for all substances but one (PFNA) be removed from the lipid membrane by gentle rinsing with water (2 mL min−1). Although short-chain PFASs have been suggested to be the potentially less bioaccumulative alternative, we found that in high enough concentrations they can also disturb the bilayer. The roughness and disorder of the bilayer was observed to increase as the concentration of PFASs increased (in particular for the high concentrations of short-chain substances i.e. PFHxA and PFBS), which can be an indication of aggregation of PFASs in the bilayer.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-15 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view