SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kadir Ahmadul) "

Search: WFRF:(Kadir Ahmadul)

  • Result 11-12 of 12
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Karami, Azadeh, et al. (author)
  • Changes in CSF cholinergic biomarkers in response to cell therapy with NGF in patients with Alzheimer's disease
  • 2015
  • In: Alzheimer's & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 11:11, s. 1316-1328
  • Journal article (peer-reviewed)abstract
    • Introduction: The extensive loss of central cholinergic functions in Alzheimer's disease (AD) brain is linked to impaired nerve growth factor (NGF) signaling. The cardinal cholinergic biomarker is the acetylcholine synthesizing enzyme, choline acetyltransferase (ChAT), which has recently been found in cerebrospinal fluid (CSF). The purpose of this study was to see if EC-NGF therapy will alter CSF levels of cholinergic biomarkers, ChAT, and acetylcholinesterase. Method: Encapsulated cell implants releasing NGF (EC-NGF) were surgically implanted bilaterally in the basal forebrain of six AD patients for 12 months and cholinergic markers in CSF were analyzed. Results: Activities of both enzymes were altered after 12 months. In particular, the activity of soluble ChAT showed high correlation with cognition, CSF tau and amyloid-beta, in vivo cerebral glucose utilization and nicotinic binding sites, and morphometric and volumetric magnetic resonance imaging measures. Discussion: A clear pattern of association is demonstrated showing a proof-of-principle effect on CSF cholinergic markers, suggestive of a beneficial EC-NGF implant therapy.
  •  
12.
  • Nordberg, Agneta, et al. (author)
  • The use of PET in Alzheimer disease
  • 2010
  • In: Nature Reviews Neurology. - : Springer Science and Business Media LLC. - 1759-4758 .- 1759-4766. ; 6:2, s. 78-87
  • Research review (peer-reviewed)abstract
    • In Alzheimer disease (AD), which is the most common cause of dementia, the underlying disease pathology most probably precedes the onset of cognitive symptoms by many years. Thus, efforts are underway to find early diagnostic markers as well as disease-modifying treatments for this disorder. PET enables various brain systems to be monitored in living individuals. In patients with AD, PET can be used to investigate changes in cerebral glucose metabolism, various neurotransmitter systems, neuroinflammation, and the protein aggregates that are characteristic of the disease, notably the amyloid deposits. These investigations are helping to further our understanding of the complex pathophysiological mechanisms that underlie AD, as well as aiding the early and differential diagnosis of the disease in the clinic. In the future, PET studies will also be useful for identifying new therapeutic targets and monitoring treatment outcomes. Amyloid imaging could be useful as early diagnostic marker of AD and for selecting patients for anti-amyloid-beta therapy, while cerebral glucose metabolism could be a suitable PET marker for monitoring disease progression. For the near future, multitracer PET studies are unlikely to be used routinely in the clinic for AD, being both burdensome and expensive; however, such studies are very informative in a research context.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-12 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view