SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lindfors L.) "

Search: WFRF:(Lindfors L.)

  • Result 11-20 of 76
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Acciari, V. A., et al. (author)
  • Radio Imaging of the Very-High-Energy gamma-Ray Emission Region in the Central Engine of a Radio Galaxy
  • 2009
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 325:5939, s. 444-448
  • Journal article (peer-reviewed)abstract
    • The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10(12) electron volts and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy Messier 87, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of the radio flux from its nucleus. These results imply that charged particles are accelerated to very high energies in the immediate vicinity of the black hole.
  •  
12.
  • Abdo, A. A., et al. (author)
  • Multi-wavelength observations of the flaring gamma-ray blazar 3C 66A in 2008 October
  • 2011
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 726:1, s. 43-
  • Journal article (peer-reviewed)abstract
    • The BL Lacertae object 3C 66A was detected in a flaring state by the Fermi Large Area Telescope (LAT) and VERITAS in 2008 October. In addition to these gamma-ray observations, F-GAMMA, GASP-WEBT, PAIRITEL, MDM, ATOM, Swift, and Chandra provided radio to X-ray coverage. The available light curves show variability and, in particular, correlated flares are observed in the optical and Fermi-LAT gamma-ray band. The resulting spectral energy distribution can be well fitted using standard leptonic models with and without an external radiation field for inverse Compton scattering. It is found, however, that only the model with an external radiation field can accommodate the intra-night variability observed at optical wavelengths.
  •  
13.
  • Veres, P., et al. (author)
  • Observation of inverse Compton emission from a long gamma-ray burst
  • 2019
  • In: Nature. - : NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 575:7783, s. 459-
  • Journal article (peer-reviewed)abstract
    • Long-duration gamma-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterized by an initial phase of bright and highly variable radiation in the kiloelectron volt-to-mega electronvoltband, which is probably produced within the jet and lasts from milliseconds to minutes, known as the prompt emission(1,2). Subsequently, the interaction of the jet with the surrounding medium generates shock waves that are responsible for the afterglow emission, which lasts from days to months and occurs over a broad energy range from the radio to the gigaelectronvolt bands(1-6). The afterglow emission is generally well explained as synchrotron radiation emitted by electrons accelerated by the external shock(7-9). Recently, intense long-lasting emission between 0.2 and 1 teraelectronvolts was observed from GRB 190114C(10,11). Here we report multifrequency observations of GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from 5 x 10(-6) to 10(12) electronvolts. We find that the broadband spectral energy distribution is double-peaked, with the teraelectronvolt emission constituting a distinct spectral component with power comparable to the synchrotron component. This component is associated with the afterglow and is satisfactorily explained by inverse Compton up-scattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed teraelectronvolt component are typical for GRBs, supporting the possibility that inverse Compton emission is commonly produced in GRBs.
  •  
14.
  • Acharyya, A., et al. (author)
  • Monte Carlo studies for the optimisation of the Cherenkov Telescope Array layout
  • 2019
  • In: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 111, s. 35-53
  • Journal article (peer-reviewed)abstract
    • The Cherenkov Telescope Array (CTA) is the major next-generation observatory for ground-based veryhigh-energy gamma-ray astronomy. It will improve the sensitivity of current ground-based instruments by a factor of five to twenty, depending on the energy, greatly improving both their angular and energy resolutions over four decades in energy (from 20 GeV to 300 TeV). This achievement will be possible by using tens of imaging Cherenkov telescopes of three successive sizes. They will be arranged into two arrays, one per hemisphere, located on the La Palma island (Spain) and in Paranal (Chile). We present here the optimised and final telescope arrays for both CTA sites, as well as their foreseen performance, resulting from the analysis of three different large-scale Monte Carlo productions.
  •  
15.
  • Acero, F., et al. (author)
  • Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7-3946
  • 2017
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 840:2
  • Journal article (peer-reviewed)abstract
    • We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7-3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti) correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H I emission. We present a series of simulated images of RX J1713.7-3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H I observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.
  •  
16.
  • Mayer, Manuel, et al. (author)
  • Constraints on particle acceleration in SS433/W50 from MAGIC and HESS observations
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Journal article (peer-reviewed)abstract
    • Context. The large jet kinetic power and non-thermal processes occurring in the microquasar SS 433 make this source a good candidate for a very high-energy (VHE) gamma-ray emitter. Gamma-ray fluxes above the sensitivity limits of current Cherenkov telescopes have been predicted for both the central X-ray binary system and the interaction regions of SS 433 jets with the surrounding W50 nebula. Non-thermal emission at lower energies has been previously reported, indicating that efficient particle acceleration is taking place in the system. Aims. We explore the capability of SS 433 to emit VHE gamma rays during periods in which the expected flux attenuation due to periodic eclipses (P-orb similar to 13.1 days) and precession of the circumstellar disk (P-pre similar to 162 days) periodically covering the central binary system is expected to be at its minimum. The eastern and western SS 433/W50 interaction regions are also examined using the whole data set available. We aim to constrain some theoretical models previously developed for this system with our observations. Methods. We made use of dedicated observations from the Major Atmospheric Gamma Imaging Cherenkov telescopes (MAGIC) and High Energy Spectroscopic System (H.E.S.S.) of SS 433 taken from 2006 to 2011. These observation were combined for the first time and accounted for a total effective observation time of 16.5 h, which were scheduled considering the expected phases of minimum absorption of the putative VHE emission. Gamma-ray attenuation does not affect the jet/medium interaction regions. In this case, the analysis of a larger data set amounting to similar to 40-80 h, depending on the region, was employed. Results. No evidence of VHE gamma-ray emission either from the central binary system or from the eastern/western interaction regions was found. Upper limits were computed for the combined data set. Differential fluxes from the central system are found to be less than or similar to 10(-12)-10(-13) TeV-1 cm(-2) s(-1) in an energy interval ranging from similar to few x 100 GeV to similar to few TeV. Integral flux limits down to similar to 10(-12)-10(-13) ph cm(-2) s(-1) and similar to 10(-13)-10(-14) ph cm(-2) s(-1) are obtained at 300 and 800 GeV, respectively. Our results are used to place constraints on the particle acceleration fraction at the inner jet regions and on the physics of the jet/medium interactions. Conclusions. Our findings suggest that the fraction of the jet kinetic power that is transferred to relativistic protons must be relatively small in SS 433, q(p) <= 2.5 x 10(-5), to explain the lack of TeV and neutrino emission from the central system. At the SS 433/W50 interface, the presence of magnetic fields greater than or similar to 10 mu G is derived assuming a synchrotron origin for the observed X-ray emission. This also implies the presence of high-energy electrons with E-e up to 50 TeV, preventing an efficient production of gamma-ray fluxes in these interaction regions.
  •  
17.
  • Abdo, A. A., et al. (author)
  • THE FIRST FERMI MULTIFREQUENCY CAMPAIGN ON BL LACERTAE : CHARACTERIZING THE LOW-ACTIVITY STATE OF THE EPONYMOUS BLAZAR
  • 2011
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 730:2, s. 101-
  • Journal article (peer-reviewed)abstract
    • We report on observations of BL Lacertae during the first 18 months of Fermi LAT science operations and present results from a 48 day multifrequency coordinated campaign from 2008 August 19 to 2008 October 7. The radio to gamma-ray behavior of BL Lac is unveiled during a low-activity state thanks to the coordinated observations of radio-band (Metsahovi and VLBA), near-IR/optical (Tuorla, Steward, OAGH, and MDM), and X-ray (RXTE and Swift) observatories. No variability was resolved in gamma rays during the campaign, and the brightness level was 15 times lower than the level of the 1997 EGRET outburst. Moderate and uncorrelated variability has been detected in UV and X-rays. The X-ray spectrum is found to be concave, indicating the transition region between the low- and high-energy components of the spectral energy distribution (SED). VLBA observation detected a synchrotron spectrum self-absorption turnover in the innermost part of the radio jet appearing to be elongated and inhomogeneous, and constrained the average magnetic field there to be less than 3 G. Over the following months, BL Lac appeared variable in gamma rays, showing flares (in 2009 April and 2010 January). There is no evidence for the correlation of gamma rays with the optical flux monitored from the ground in 18 months. The SED may be described by a single-zone or a two-zone synchrotron self-Compton (SSC) model, but a hybrid SSC plus external radiation Compton model seems to be preferred based on the observed variability and the fact that it provides a fit closest to equipartition.
  •  
18.
  • De Angelis, A., et al. (author)
  • Science with e-ASTROGAM A space mission for MeV-GeV gamma-ray astrophysics
  • 2018
  • In: Journal of High Energy Astrophysics. - : Elsevier. - 2214-4048 .- 2214-4056. ; 19, s. 1-106
  • Journal article (peer-reviewed)abstract
    • e-ASTROGAM ('enhanced ASTROGAM') is a breakthrough Observatory space mission, with a detector composed by a Silicon tracker, a calorimeter, and an anticoincidence system, dedicated to the study of the non-thermal Universe in the photon energy range from 0.3 MeV to 3 GeV - the lower energy limit can be pushed to energies as low as 150 keV for the tracker, and to 30 keV for calorimetric detection. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LIGO-Virgo-GEO600-KAGRA, SKA, ALMA, E-ELT, TMT, LSST, JWST, Athena, CTA, IceCube, KM3NeT, and LISA.
  •  
19.
  • Acciari, V.A., et al. (author)
  • Monitoring the magnetar SGR 1935+2154 with the MAGIC telescopes
  • 2022
  • In: Proceedings of Science. - 1824-8039. ; 395
  • Conference paper (peer-reviewed)abstract
    • The Galactic magnetar SGR 1935+2154 was associated with a bright, millisecond-timescale fast radio burst (FRB) which occured in April 2020, during a flaring episode. This was the first time an FRB was unequivocally associated with a Galactic source, and the first FRB for which the nature of the emitting source was identified. Moreover, it was the first FRB with a counterpart at another wavelength correlated in time, an atypical, hard X-ray burst, which provides clear evidence for accompanying non-thermal processes. The MAGIC Telescopes are Imaging Air Cherenkov Telescopes (IACTs) sensitive to very-high-energy (VHE, E>100 GeV) gamma rays. Located at the center of the camera lies the MAGIC Central pixel, a single fully-modified photosensor-toreadout chain to measure millisecond-duration optical signals, displaying a maximum sensitivity at a wavelength of 350 nm. This allows MAGIC to operate simultaneously both as a VHE gammaray and a fast optical telescope. The MAGIC telescopes have monitored SGR 1935+2154 in a multiwavelength campaign involving X-ray, radio and optical facilities. In this contribution, we will show the results on the search for the VHE counterpart of the first SGR-FRB source in this multiwavelength context, as well as the search for fast optical bursts with the MAGIC Central Pixel.
  •  
20.
  • Ackermann, M., et al. (author)
  • MULTI-WAVELENGTH OBSERVATIONS OF BLAZAR AO 0235+164 IN THE 2008-2009 FLARING STATE
  • 2012
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 751:2
  • Journal article (peer-reviewed)abstract
    • The blazarAO 0235+164 (z=0.94) has been one of the most active objects observed by Fermi Large Area Telescope (LAT) since its launch in Summer 2008. In addition to the continuous coverage by Fermi, contemporaneous observations were carried out from the radio to gamma-ray bands between 2008 September and 2009 February. In this paper, we summarize the rich multi-wavelength data collected during the campaign (including F-GAMMA, GASP-WEBT, Kanata, OVRO, RXTE, SMARTS, Swift, and other instruments), examine the cross-correlation between the light curves measured in the different energy bands, and interpret the resulting spectral energy distributions in the context of well-known blazar emission models. We find that the gamma-ray activity is well correlated with a series of near-IR/optical flares, accompanied by an increase in the optical polarization degree. On the other hand, the X-ray light curve shows a distinct 20 day high state of unusually soft spectrum, which does not match the extrapolation of the optical/UV synchrotron spectrum. We tentatively interpret this feature as the bulk Compton emission by cold electrons contained in the jet, which requires an accretion disk corona with an effective covering factor of 19% at a distance of 100 R-g. We model the broadband spectra with a leptonic model with external radiation dominated by the infrared emission from the dusty torus.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-20 of 76
Type of publication
journal article (60)
conference paper (13)
reports (2)
research review (1)
Type of content
peer-reviewed (60)
other academic/artistic (16)
Author/Editor
Lindfors, E. (33)
Nilsson, K. (24)
De Angelis, A. (23)
Barrio, J. A. (22)
De Lotto, B. (22)
Doro, M. (22)
show more...
Hadasch, D. (22)
Lombardi, S. (22)
Antonelli, L. A. (21)
Biland, A. (21)
Contreras, J. L. (21)
Dazzi, F. (21)
Dorner, D. (21)
Martinez, M. (20)
Bonnoli, G. (20)
Cortina, J. (20)
Covino, S. (20)
Elsaesser, D. (20)
Longo, F. (20)
Maneva, G. (20)
Paneque, D. (20)
Bednarek, W. (19)
Blanch, O. (19)
Font, L. (19)
Garczarczyk, M. (19)
Hrupec, D. (19)
Paredes, J. M. (19)
Persic, M. (19)
Rico, J. (19)
Bernardini, E. (18)
Mariotti, M. (18)
Moralejo, A. (18)
Prandini, E. (18)
Rhode, W. (17)
Lopez-Coto, R. (17)
Fonseca, M. V. (17)
Gaug, M. (17)
Mannheim, K. (17)
Mazin, D. (17)
Paoletti, R. (17)
Ribo, M. (17)
Prester, D. Dominis (16)
Fruck, C. (16)
Godinovic, N. (16)
Hayashida, M. (16)
Kubo, H. (16)
Lopez, M. (16)
Miranda, J. M. (16)
Mirzoyan, R. (16)
Schweizer, T. (16)
show less...
University
Stockholm University (26)
Karolinska Institutet (26)
Linnaeus University (13)
Royal Institute of Technology (10)
Lund University (7)
Uppsala University (6)
show more...
University of Gothenburg (5)
Chalmers University of Technology (3)
Örebro University (2)
Linköping University (2)
Mälardalen University (1)
The Swedish School of Sport and Health Sciences (1)
IVL Swedish Environmental Research Institute (1)
show less...
Language
English (74)
Swedish (1)
Finnish (1)
Research subject (UKÄ/SCB)
Natural sciences (37)
Medical and Health Sciences (9)
Social Sciences (5)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view