SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Mazzali P. A.) srt2:(2020-2024)"

Search: WFRF:(Mazzali P. A.) > (2020-2024)

  • Result 11-17 of 17
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Prentice, S. J., et al. (author)
  • Transitional events in the spectrophotometric regime between stripped envelope and superluminous supernovae
  • 2021
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 508:3, s. 4342-4358
  • Journal article (peer-reviewed)abstract
    • The division between stripped-envelope supernovae (SE-SNe) and superluminous supernovae (SLSNe) is not well-defined in either photometric or spectroscopic space. While a sharp luminosity threshold has been suggested, there remains an increasing number of transitional objects that reach this threshold without the spectroscopic signatures common to SLSNe. In this work, we present data and analysis on four SNe transitional between SE-SNe and SLSNe; the He-poor SNe 2019dwa and 2019cri, and the He-rich SNe 2019hge and 2019unb. Each object displays long-lived and variable photometric evolution with luminosities around the SLSN threshold of Mr < −19.8 mag. Spectroscopically however, these objects are similar to SE-SNe, with line velocities lower than either SE-SNe and SLSNe, and thus represent an interesting case of rare transitional events.
  •  
12.
  • Aamer, Aysha, et al. (author)
  • A precursor plateau and pre-maximum [O ii] emission in the superluminous SN2019szu : a pulsational pair-instability candidate
  • 2023
  • In: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 527:4, s. 11970-11995
  • Journal article (peer-reviewed)abstract
    • We present a detailed study on SN2019szu, a Type I superluminous supernova at z = 0.213 that displayed unique photometric and spectroscopic properties. Pan-STARRS and ZTF forced photometry show a pre-explosion plateau lasting ∼40 d. Unlike other SLSNe that show decreasing photospheric temperatures with time, the optical colours show an apparent temperature increase from ∼15 000 to ∼20 000 K over the first 70 d, likely caused by an additional pseudo-continuum in the spectrum. Remarkably, the spectrum displays a forbidden emission line (likely attributed to λλ7320,7330) visible 16 d before maximum light, inconsistent with an apparently compact photosphere. This identification is further strengthened by the appearances of [O III] λλ4959, 5007, and [O III] λ4363 seen in the spectrum. Comparing with nebular spectral models, we find that the oxygen line fluxes and ratios can be reproduced with ∼0.25 M⊙ of oxygen-rich material with a density of ∼10−15 g cm−3⁠. The low density suggests a circumstellar origin, but the early onset of the emission lines requires that this material was ejected within the final months before the terminal explosion, consistent with the timing of the precursor plateau. Interaction with denser material closer to the explosion likely produced the pseudo-continuum bluewards of ∼5500 Å. We suggest that this event is one of the best candidates to date for a pulsational pair-instability ejection, with early pulses providing the low density material needed for the formation of the forbidden emission line, and collisions between the final shells of ejected material producing the pre-explosion plateau.
  •  
13.
  • Medler, K., et al. (author)
  • SN2020cpg : an energetic link between Type IIb and Ib supernovae
  • 2021
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 506:2, s. 1832-1849
  • Journal article (peer-reviewed)abstract
    • Stripped-envelope supernovae (SE-SNe) show a wide variety of photometric and spectroscopic properties. This is due to the different potential formation channels and the stripping mechanism that allows for a large diversity within the progenitors outer envelope compositions. Here, the photometric and spectroscopic observations of SN 2020cpg covering ∼130 d from the explosion date are presented. SN 2020cpg (z = 0.037) is a bright SE-SNe with the B-band peaking at MB = −17.75 ± 0.39 mag and a maximum pseudo-bolometric luminosity of Lmax = 6.03 ± 0.01 × 1042 erg s−1. Spectroscopically, SN 2020cpg displays a weak high- and low-velocity H α feature during the photospheric phase of its evolution, suggesting that it contained a detached hydrogen envelope prior to explosion. From comparisons with spectral models, the mass of hydrogen within the outer envelope was constrained to be ∼0.1 M⊙. From the pseudo-bolometric light curve of SN 2020cpg a 56Ni mass of MNi ∼ 0.27 ± 0.08 M⊙ was determined using an Arnett-like model. The ejecta mass and kinetic energy of SN 2020cpg were determined using an alternative method that compares the light curve of SN 2020cpg and several modelled SE-SNe, resulting in an ejecta mass of Mejc ∼ 5.5 ± 2.0 M⊙ and a kinetic energy of EK ∼ 9.0 ± 3.0 × 1051 erg. The ejected mass indicates a progenitor mass of 18−25 M⊙. The use of the comparative light curve method provides an alternative process to the commonly used Arnett-like model to determine the physical properties of SE-SNe.
  •  
14.
  • Reguitti, A., et al. (author)
  • SN 2021foa, a transitional event between a Type IIn (SN 2009ip-like) and a Type Ibn supernova
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 662
  • Journal article (peer-reviewed)abstract
    • We present photometric and spectroscopic data of the unusual interacting supernova (SN) 2021foa. It rose to an absolute magnitude peak of Mr = −18 mag in 20 days. The initial light curve decline shows some luminosity fluctuations before a long-lasting flattening. A faint source (Mr ∼ −14 mag) was detected in the weeks preceding the main event, showing a slowly rising luminosity trend. The r-band absolute light curve is very similar to those of SN 2009ip-like events, with a faint and shorter duration brightening (‘Event A’) followed by a much brighter peak (‘Event B’). The early spectra of SN 2021foa show a blue continuum with narrow (∼400 km s−1) H emission lines that, two weeks later, reveal a complex profile, with a narrow P Cygni on top of an intermediate-width (∼2700 km s−1) component. At +12 days, metal lines in emission appear and He I lines become very strong, with He I λ5876 reaching half of the Hα luminosity, much higher than in previous SN 2009ip-like objects. We propose that SN 2021foa is a transitional event between the H-rich SN 2009ip-like SNe and the He-rich Type Ibn SNe.
  •  
15.
  • Williams, S. C., et al. (author)
  • Observations of type Ia supernova SN 2020nlb up to 600 days after explosion, and the distance to M85
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Journal article (peer-reviewed)abstract
    • The type Ia supernova (SN Ia) SN 2020nlb was discovered in the Virgo Cluster galaxy M85 shortly after explosion. Here we present observations that include one of the earliest high-quality spectra and some of the earliest multi-colour photometry of a SN Ia to date. We calculated that SN 2020nlb faded 1.28 ± 0.02 mag in the B band in the first 15 d after maximum brightness. We independently fitted a power-law rise to the early flux in each filter, and found that the optical filters all give a consistent first light date estimate. In contrast to the earliest spectra of SN 2011fe, those of SN 2020nlb show strong absorption features from singly ionised metals, including Fe II and Ti II, indicating lower-excitation ejecta at the earliest times. These earliest spectra show some similarities to maximum-light spectra of 1991bg-like SNe Ia. The spectra of SN 2020nlb then evolve to become hotter and more similar to SN 2011fe as it brightens towards peak. We also obtained a sequence of nebular spectra that extend up to 594 days after maximum light, a phase out to which SNe Ia are rarely followed. The [Fe III]/[Fe II] flux ratio (as measured from emission lines in the optical spectra) begins to fall around 300 days after peak; by the +594 d spectrum, the ionisation balance of the emitting region of the ejecta has shifted dramatically, with [Fe III] by then being completely absent. The final spectrum is almost identical to SN 2011fe at a similar epoch. Comparing our data to other SN Ia nebular spectra, there is a possible trend where SNe that were more luminous at peak tend to have a higher [Fe III]/[Fe II] flux ratio in the nebular phase, but there is a notable outlier in SN 2003hv. Finally, using light-curve fitting on our data, we estimate the distance modulus for M85 to be μ0 = 30.99 ± 0.19 mag, corresponding to a distance of 15.8+1.4-1.3 Mpc.
  •  
16.
  • Chen, Ping, et al. (author)
  • A 12.4-day periodicity in a close binary system after a supernova
  • 2024
  • In: Nature. - 0028-0836 .- 1476-4687. ; 625:7994, s. 253-258
  • Journal article (peer-reviewed)abstract
    • Neutron stars and stellar-mass black holes are the remnants of massive star explosions1. Most massive stars reside in close binary systems2, and the interplay between the companion star and the newly formed compact object has been theoretically explored3, but signatures for binarity or evidence for the formation of a compact object during a supernova explosion are still lacking. Here we report a stripped-envelope supernova, SN 2022jli, which shows 12.4-day periodic undulations during the declining light curve. Narrow Hα emission is detected in late-time spectra with concordant periodic velocity shifts, probably arising from hydrogen gas stripped from a companion and accreted onto the compact remnant. A new Fermi-LAT γ-ray source is temporally and positionally consistent with SN 2022jli. The observed properties of SN 2022jli, including periodic undulations in the optical light curve, coherent Hα emission shifting and evidence for association with a γ-ray source, point to the explosion of a massive star in a binary system leaving behind a bound compact remnant. Mass accretion from the companion star onto the compact object powers the light curve of the supernova and generates the γ-ray emission.
  •  
17.
  • Fiore, Achille, et al. (author)
  • Detailed spectrophotometric analysis of the superluminous and fast evolving SN 2019neq
  • 2024
  • In: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 527:3, s. 6473-6494
  • Journal article (peer-reviewed)abstract
    • SN 2019neq was a very fast evolving superluminous supernova. At a redshift z = 0.1059, its peak absolute magnitude was −21.5 ± 0.2 mag in g band. In this work, we present data and analysis from an extensive spectrophotometric follow-up campaign using multiple observational facilities. Thanks to a nebular spectrum of SN 2019neq, we investigated some of the properties of the host galaxy at the location of SN 2019neq and found that its metallicity and specific star formation rate are in a good agreement with those usually measured for SLSNe-I hosts. We then discuss the plausibility of the magnetar and the circumstellar interaction scenarios to explain the observed light curves, and interpret a nebular spectrum of SN 2019neq using published SUMO radiative-transfer models. The results of our analysis suggest that the spin-down radiation of a millisecond magnetar with a magnetic field B ≃ 6×1014 G could boost the luminosity of SN 2019neq.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-17 of 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view