SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Meijerink M. R.) "

Search: WFRF:(Meijerink M. R.)

  • Result 11-20 of 36
Sort/group result
   
EnumerationReferenceCoverFind
11.
  •  
12.
  •  
13.
  • Geach, J.E., et al. (author)
  • The SCUBA-2 Cosmology Legacy Survey: blank-field number counts of 450-mu m-selected galaxies and their contribution to the cosmic infrared background
  • 2013
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 432:1, s. 53-61
  • Journal article (peer-reviewed)abstract
    • The first deep blank-field 450 mu m map (1 sigma approximate to 1.3 mJy) from the Submillimetre Common-User Bolometer Array-2 SCUBA-2 Cosmology Legacy Survey (S2CLS), conducted with the James Clerk Maxwell Telescope (JCMT) is presented. Our map covers 140 arcmin(2) of the Cosmological Evolution Survey field, in the footprint of the Hubble Space Telescope (HST) Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey. Using 60 submillimetre galaxies detected at >= 3.75s, we evaluate the number counts of 450-mu m-selected galaxies with flux densities S-450 > 5 mJy. The 8 arcsec JCMT beam and high sensitivity of SCUBA-2 now make it possible to directly resolve a larger fraction of the cosmic infrared background (CIB, peaking at. similar to 200 mu m) into the individual galaxies responsible for its emission than has previously been possible at this wavelength. At S450 > 5 mJy, we resolve (7.4 +/- 0.7) x 10(-2) MJy sr(-1) of the CIB at 450 mu m (equivalent to 16 +/- 7 per cent of the absolute brightness measured by the Cosmic Background Explorer at this wavelength) into point sources. A further similar to 40 per cent of the CIB can be recovered through a statistical stack of 24 mu m emitters in this field, indicating that the majority (approximate to 60 per cent) of the CIB at 450 mu m is emitted by galaxies with S450 > 2 mJy. The average redshift of 450 mu m emitters identified with an optical/near-infrared counterpart is estimated to be = 1.3, implying that the galaxies in the sample are in the ultraluminous class (LIR approximate to 1.1 x 1012 L approximate to). If the galaxies contributing to the statistical stack lie at similar redshifts, then the majority of the CIB at 450 mu m is emitted by galaxies in the luminous infrared galaxy (LIRG) class with LIR > 3.6 x 1011 L-circle dot.
  •  
14.
  •  
15.
  • Rosenberg, M. J. F., et al. (author)
  • The Herschel Comprehensive (U)lirg Emission Survey (Hercules): Co Ladders, Fine Structure Lines, and Neutral Gas Cooling
  • 2015
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 801:2
  • Journal article (peer-reviewed)abstract
    • (Ultra) luminous infrared galaxies ((U)LIRGs) are objects characterized by their extreme infrared (8-1000 mu m) luminosities (L-LIRG > 10(11) L-circle dot and L-ULIRG > 10(12) L-circle dot). The Herschel Comprehensive ULIRG Emission Survey (PI: van derWerf) presents a representative flux-limited sample of 29 (U)LIRGs that spans the full luminosity range of these objects (10(11)L(circle dot)
  •  
16.
  • van der Werf, P.P., et al. (author)
  • Black hole accretion and star formation as drivers of gas excitation and chemistry in Markarian 231
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L42
  • Journal article (peer-reviewed)abstract
    • We present a full high resolution SPIRE FTS spectrum of the nearby ultraluminous infrared galaxy Mrk 231. In total 25 lines are detected, including CO J = 5-4 through J = 13-12, 7 rotational lines of H2O, 3 of OH+ and one line each of H2O+, CH+, and HF. We find that the excitation of the CO rotational levels up to J = 8 can be accounted for by UV radiation from star formation. However, the approximately flat luminosity distribution of the CO lines over the rotational ladder above J = 8 requires the presence of a separate source of excitation for the highest CO lines. We explore X-ray heating by the accreting supermassive black hole in Mrk 231 as a source of excitation for these lines, and find that it can reproduce the observed luminosities. We also consider a model with dense gas in a strong UV radiation field to produce the highest CO lines, but find that this model strongly overpredicts the hot dust mass in Mrk 231. Our favoured model consists of a star forming disk of radius 560 pc, containing clumps of dense gas exposed to strong UV radiation, dominating the emission of CO lines up to J = 8. X-rays from the accreting supermassive black hole in Mrk 231 dominate the excitation and chemistry of the inner disk out to a radius of 160 pc, consistent with the X-ray power of the AGN in Mrk 231. The extraordinary luminosity of the OH+ and H2O+ lines reveals the signature of X-ray driven excitation and chemistry in this region.
  •  
17.
  • Gonzalez-Alfonso, E., et al. (author)
  • Herschel observations of water vapour in Markarian 231
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L43
  • Journal article (peer-reviewed)abstract
    • The Ultra luminous infrared galaxy (ULIRG) Mrk 231 reveals up to seven rotational lines of water (H2O) in emission, including a very high-lying (Eupper = 640 K) line detected at a 4 sigma level, within the Herschel/SPIRE wavelength range (190
  •  
18.
  •  
19.
  • Kroeze, E., et al. (author)
  • Pediatric Precursor B-Cell Lymphoblastic Malignancies: From Extramedullary to Medullary Involvement
  • 2022
  • In: Cancers. - : MDPI AG. - 2072-6694. ; 14:16
  • Journal article (peer-reviewed)abstract
    • Simple Summary B-cell lymphoblastic lymphoma (BCP-LBL) and B-cell acute lymphoblastic leukemia (BCP-ALL) are both malignancies of immature B-cells. However, BCP-ALL has been extensively studied and treatment protocols have changed over the last decades, whereas BCP-LBL is quite rare, and treatment has stayed roughly the same. In this retrospective study, we compare the clinical characteristics of a cohort of BCP-LBL patients to a cohort BCP-ALL patients. With the comparison of this unique large cohort of immature B-cell malignancies, we aim to contribute to elucidating whether BCP-LBL and BCP-ALL represent two diseases, or different representations of the same disease. Increasing the understanding of BCP-LBL in comparison to BCP-ALL is crucial for improving treatment and prognosis for BCP-LBL. B-cell lymphoblastic lymphoma (BCP-LBL) and B-cell acute lymphoblastic leukemia (BCP-ALL) are the malignant counterparts of immature B-cells. BCP-ALL is the most common hematological malignancy in childhood, while BCP-LBL accounts for only 1% of all hematological malignancies in children. Therefore, BCP-ALL has been well studied and treatment protocols have changed over the last decades, whereas treatment for BCP-LBL has stayed roughly the same. Clinical characteristics of 364 pediatric patients with precursor B-cell malignancies were studied, consisting of BCP-LBL (n = 210) and BCP-ALL (n = 154) patients. Our results indicate that based on the clinical presentation of disease, B-cell malignancies probably represent a spectrum ranging from complete isolated medullary disease to apparent complete extramedullary disease. Hepatosplenomegaly and peripheral blood involvement are the most important discriminators, as both seen in 80% and 95% of the BCP-ALL patients and in 2% of the BCP-LBL patients, respectively. In addition, we show that the overall survival rates in this cohort differ significantly between BCP-LBL and BCP-ALL patients aged 1-18 years (p = 0.0080), and that the outcome for infants (0-1 years) with BCP-LBL is significantly decreased compared to BCP-LBL patients of all other pediatric ages (p < 0.0001).
  •  
20.
  • Röllig, M., et al. (author)
  • A photon dominated region code comparison study
  • 2007
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 467:No. 1 (May III 2007), s. 187-206
  • Journal article (peer-reviewed)abstract
    • Aims.We present a comparison between independent computer codes, modeling the physics and chemistry of interstellar photon dominated regions (PDRs). Our goal was to understand the mutual differences in the PDR codes and their effects on the physical and chemical structure of the model clouds, and to converge the output of different codes to a common solution.Methods. A number of benchmark models have been created, covering low and high gas densities n = 103,105.5 cm-3 and far ultraviolet intensities $\chi$ = 10, 105 in units of the Draine field (FUV: 6
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-20 of 36

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view