SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Patrone C) "

Search: WFRF:(Patrone C)

  • Result 11-20 of 59
Sort/group result
   
EnumerationReferenceCoverFind
11.
  •  
12.
  • Lietzau, G, et al. (author)
  • A High-Fat Diet Increases Activation of the Glucagon-Like Peptide-1-Producing Neurons in the Nucleus Tractus Solitarii: an Effect that is Partially Reversed by Drugs Normalizing Glycemia
  • 2022
  • In: Cellular and molecular neurobiology. - : Springer Science and Business Media LLC. - 1573-6830 .- 0272-4340. ; 42:6, s. 1995-2002
  • Journal article (peer-reviewed)abstract
    • Glucagon-like peptide-1 (GLP-1) is a peripheral incretin and centrally active peptide produced in the intestine and nucleus tractus solitarii (NTS), respectively. GLP-1 not only regulates metabolism but also improves cognition and is neuroprotective. While intestinal GLP-1-producing cells have been well characterized, less is known about GLP-1-producing neurons in NTS. We hypothesized that obesity-induced type 2 diabetes (T2D) impairs the function of NTS GLP-1-producing neurons and glycemia normalization counteracts this effect. We used immunohistochemistry/quantitative microscopy to investigate the number, potential atrophy, and activation (cFos-expression based) of NTS GLP-1-producing neurons, in non-diabetic versus obese/T2D mice (after 12 months of high-fat diet). NTS neuroinflammation was also assessed. The same parameters were quantified in obese/T2D mice treated from month 9 to 12 with two unrelated anti-hyperglycemic drugs: the dipeptidyl peptidase-4 inhibitor linagliptin and the sulfonylurea glimepiride. We show no effect of T2D on the number and volume but increased activation of NTS GLP-1-producing neurons. This effect was partially normalized by both anti-diabetic treatments, concurrent with decreased neuroinflammation. Increased activation of NTS GLP-1-producing neurons could represent an aberrant metabolic demand in T2D/obesity, attenuated by glycemia normalization. Whether this effect represents a pathophysiological process preceding GLP-1 signaling impairment in the CNS, remains to be investigated.
  •  
13.
  • Bayassi-Jakowicka, M, et al. (author)
  • More than Addiction-The Nucleus Accumbens Contribution to Development of Mental Disorders and Neurodegenerative Diseases
  • 2022
  • In: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 23:5
  • Journal article (peer-reviewed)abstract
    • Stress and negative emotions evoked by social relationships and working conditions, frequently accompanied by the consumption of addictive substances, and metabolic and/or genetic predispositions, negatively affect brain function. One of the affected structures is nucleus accumbens (NAc). Although its function is commonly known to be associated with brain reward responses and addiction, a growing body of evidence also suggests its role in some mental disorders, such as depression and schizophrenia, as well as neurodegenerative diseases, such as Alzheimer’s, Huntington’s, and Parkinson’s. This may result from disintegration of the extensive connections based on numerous neurotransmitter systems, as well as impairment of some neuroplasticity mechanisms in the NAc. The consequences of NAc lesions are both morphological and functional. They include changes in the NAc’s volume, cell number, modifications of the neuronal dendritic tree and dendritic spines, and changes in the number of synapses. Alterations in the synaptic plasticity affect the efficiency of synaptic transmission. Modification of the number and structure of the receptors affects signaling pathways, the content of neuromodulators (e.g., BDNF) and transcription factors (e.g., pCREB, DeltaFosB, NFκB), and gene expression. Interestingly, changes in the NAc often have a different character and intensity compared to the changes observed in the other parts of the basal ganglia, in particular the dorsal striatum. In this review, we highlight the role of the NAc in various pathological processes in the context of its structural and functional damage, impaired connections with the other brain areas cooperating within functional systems, and progression of the pathological processes.
  •  
14.
  •  
15.
  • Chiazza, F, et al. (author)
  • The Stroke-Induced Increase of Somatostatin-Expressing Neurons is Inhibited by Diabetes: A Potential Mechanism at the Basis of Impaired Stroke Recovery
  • 2021
  • In: Cellular and molecular neurobiology. - : Springer Science and Business Media LLC. - 1573-6830 .- 0272-4340. ; 41:43, s. 591-603
  • Journal article (peer-reviewed)abstract
    • Type 2 diabetes (T2D) hampers recovery after stroke, but the underling mechanisms are mostly unknown. In a recently published study (Pintana et al. in Clin Sci (Lond) 133(13):1367–1386, 2019), we showed that impaired recovery in T2D was associated with persistent atrophy of parvalbumin+ interneurons in the damaged striatum. In the current work, which is an extension of the abovementioned study, we investigated whether somatostatin (SOM)+ interneurons are also affected by T2D during the stroke recovery phase. C57Bl/6j mice were fed with high-fat diet or standard diet (SD) for 12 months and subjected to 30-min transient middle cerebral artery occlusion (tMCAO). SOM+ cell number/density in the striatum was assessed by immunohistochemistry 2 and 6 weeks after tMCAO in peri-infarct and infarct areas. This was possible by establishing a computer-based quantification method that compensates the post-stroke tissue deformation and the irregular cell distribution. SOM+ interneurons largely survived the stroke as seen at 2 weeks. Remarkably, 6 weeks after stroke, the number of SOM+ interneurons increased (vs. contralateral striatum) in SD-fed mice in both peri-infarct and infarct areas. However, this increase did not result from neurogenesis. T2D completely abolished this effect specifically in the in the infarct area. The results suggest that the up-regulation of SOM expression in the post-stroke phase could be related to neurological recovery and T2D could inhibit this process. We also present a new and precise method for cell counting in the stroke-damaged striatum that allows to reveal accurate, area-related effects of stroke on cell number.
  •  
16.
  • Darsalia, V, et al. (author)
  • CORRIGENDUM
  • 2018
  • In: Diabetes, obesity & metabolism. - : Wiley. - 1463-1326 .- 1462-8902. ; 20:4, s. 1086-1086
  • Journal article (peer-reviewed)
  •  
17.
  •  
18.
  • Darsalia, V., et al. (author)
  • Exendin-4 Reduces Ischemic Brain Injury in Normal and Aged Type 2 Diabetic Mice and Promotes Microglial M2 Polarization
  • 2014
  • In: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 9:8
  • Journal article (peer-reviewed)abstract
    • Exendin-4 is a glucagon-like receptor 1 agonist clinically used against type 2 diabetes that has also shown neuroprotective effects in experimental stroke models. However, while the neuroprotective efficacy of Exendin-4 has been thoroughly investigated if the pharmacological treatment starts before stroke, the therapeutic potential of the Exendin-4 if the treatment starts acutely after stroke has not been clearly determined. Further, a comparison of the neuroprotective efficacy in normal and aged diabetic mice has not been performed. Finally, the cellular mechanisms behind the efficacy of Exendin-4 have been only partially studied. The main objective of this study was to determine the neuroprotective efficacy of Exendin4 in normal and aged type 2 diabetic mice if the treatment started after stroke in a clinically relevant setting. Furthermore we characterized the Exendin-4 effects on stroke-induced neuroinflammation. Two-month-old healthy and 14-month-old type 2 diabetic/obese mice were subjected to middle cerebral artery occlusion. 5 or 50 mg/kg Exendin-4 was administered intraperitoneally at 1.5, 3 or 4.5 hours thereafter. The treatment was continued (0.2 mg/kg/day) for 1 week. The neuroprotective efficacy was assessed by stroke volume measurement and stereological counting of NeuN-positive neurons. Neuroinflammation was determined by gene expression analysis of M1/M2 microglia subtypes and proinflammatory cytokines. We show neuroprotective efficacy of 50 mg/kg Exendin-4 at 1.5 and 3 hours after stroke in both young healthy and aged diabetic/obese mice. The 5 mu g/kg dose was neuroprotective at 1.5 hour only. Proinflammatory markers and M1 phenotype were not impacted by Exendin-4 treatment while M2 markers were significantly up regulated. Our results support the use of Exendin-4 to reduce stroke-damage in the prehospital/early hospitalization setting irrespectively of age/diabetes. The results indicate the polarization of microglia/macrophages towards the M2 reparative phenotype as a potential mechanism of neuroprotection.
  •  
19.
  •  
20.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-20 of 59

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view