SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rohrer Michael D.) "

Search: WFRF:(Rohrer Michael D.)

  • Result 11-15 of 15
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Paterson, Ross W, et al. (author)
  • Cerebrospinal fluid in the differential diagnosis of Alzheimer's disease: clinical utility of an extended panel of biomarkers in a specialist cognitive clinic
  • 2018
  • In: Alzheimer's research & therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 10, s. 1-11
  • Journal article (peer-reviewed)abstract
    • Cerebrospinal fluid (CSF) biomarkers are increasingly being used to support a diagnosis of Alzheimer's disease (AD). Their clinical utility for differentiating AD from non-AD neurodegenerative dementias, such as dementia with Lewy bodies (DLB) or frontotemporal dementia (FTD), is less well established. We aimed to determine the diagnostic utility of an extended panel of CSF biomarkers to differentiate AD from a range of other neurodegenerative dementias.We used immunoassays to measure conventional CSF markers of amyloid and tau pathology (amyloid beta (Aβ)1-42, total tau (T-tau), and phosphorylated tau (P-tau)) as well as amyloid processing (AβX-38, AβX-40, AβX-42, soluble amyloid precursor protein (sAPP)α, and sAPPβ), large fibre axonal degeneration (neurofilament light chain (NFL)), and neuroinflammation (YKL-40) in 245 patients with a variety of dementias and 30 controls. Patients fulfilled consensus criteria for AD (n=156), DLB (n=20), behavioural variant frontotemporal dementia (bvFTD; n=45), progressive non-fluent aphasia (PNFA; n=17), and semantic dementia (SD; n=7); approximately 10% were pathology/genetically confirmed (n=26). Global tests based on generalised least squares regression were used to determine differences between groups. Non-parametric receiver operating characteristic (ROC) curves and area under the curve (AUC) analyses were used to quantify how well each biomarker discriminated AD from each of the other diagnostic groups (or combinations of groups). CSF cut-points for the major biomarkers found to have diagnostic utility were validated using an independent cohort which included causes of AD (n=104), DLB (n=5), bvFTD (n=12), PNFA (n=3), SD (n=9), and controls (n=10).There were significant global differences in Aβ1-42, T-tau, T-tau/Aβ1-42 ratio, P-tau-181, NFL, AβX-42, AβX-42/X-40 ratio, APPα, and APPβ between groups. At a fixed sensitivity of 85%, AβX-42/X-40 could differentiate AD from controls, bvFTD, and SD with specificities of 93%, 85%, and 100%, respectively; for T-tau/Aβ1-42 these specificities were 83%, 70%, and 86%. AβX-42/X-40 had similar or higher specificity than Aβ1-42. No biomarker or ratio could differentiate AD from DLB or PNFA with specificity >50%. Similar sensitivities and specificities were found in the independent validation cohort for differentiating AD and other dementias and in a pathology/genetically confirmed sub-cohort.CSF AβX-42/X-40 and T-tau/Aβ1-42 ratios have utility in distinguishing AD from controls, bvFTD, and SD. None of the biomarkers tested had good specificity at distinguishing AD from DLB or PNFA.
  •  
12.
  • Benatar, Michael, et al. (author)
  • Preventing amyotrophic lateral sclerosis : insights from pre-symptomatic neurodegenerative diseases
  • 2022
  • In: Brain. - : Oxford University Press. - 0006-8950 .- 1460-2156. ; 145:1, s. 27-44
  • Research review (peer-reviewed)abstract
    • Significant progress has been made in understanding the pre-symptomatic phase of amyotrophic lateral sclerosis. While much is still unknown, advances in other neurodegenerative diseases offer valuable insights. Indeed, it is increasingly clear that the well-recognized clinical syndromes of Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal muscular atrophy and frontotemporal dementia are also each preceded by a pre-symptomatic or prodromal period of varying duration, during which the underlying disease process unfolds, with associated compensatory changes and loss of inherent system redundancy. Key insights from these diseases highlight opportunities for discovery in amyotrophic lateral sclerosis. The development of biomarkers reflecting amyloid and tau has led to a shift in defining Alzheimer's disease based on inferred underlying histopathology. Parkinson's disease is unique among neurodegenerative diseases in the number and diversity of non-genetic biomarkers of pre-symptomatic disease, most notably REM sleep behaviour disorder. Huntington's disease benefits from an ability to predict the likely timing of clinically manifest disease based on age and CAG-repeat length alongside reliable neuroimaging markers of atrophy. Spinal muscular atrophy clinical trials have highlighted the transformational value of early therapeutic intervention, and studies in frontotemporal dementia illustrate the differential role of biomarkers based on genotype. Similar advances in amyotrophic lateral sclerosis would transform our understanding of key events in pathogenesis, thereby dramatically accelerating progress towards disease prevention. Deciphering the biology of pre-symptomatic amyotrophic lateral sclerosis relies on a clear conceptual framework for defining the earliest stages of disease. Clinically manifest amyotrophic lateral sclerosis may emerge abruptly, especially among those who harbour genetic mutations associated with rapidly progressive amyotrophic lateral sclerosis. However, the disease may also evolve more gradually, revealing a prodromal period of mild motor impairment preceding phenoconversion to clinically manifest disease. Similarly, cognitive and behavioural impairment, when present, may emerge gradually, evolving through a prodromal period of mild cognitive impairment or mild behavioural impairment before progression to amyotrophic lateral sclerosis. Biomarkers are critically important to studying pre-symptomatic amyotrophic lateral sclerosis and essential to efforts to intervene therapeutically before clinically manifest disease emerges. The use of non-genetic biomarkers, however, presents challenges related to counselling, informed consent, communication of results and limited protections afforded by existing legislation. Experiences from pre-symptomatic genetic testing and counselling, and the legal protections against discrimination based on genetic data, may serve as a guide. Building on what we have learned - more broadly from other pre-symptomatic neurodegenerative diseases and specifically from amyotrophic lateral sclerosis gene mutation carriers - we present a road map to early intervention, and perhaps even disease prevention, for all forms of amyotrophic lateral sclerosis.
  •  
13.
  • Gallagher, Michael D., et al. (author)
  • TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions
  • 2014
  • In: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 127:3, s. 407-418
  • Journal article (peer-reviewed)abstract
    • Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9orf72) have recently been linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis, and may be the most common genetic cause of both neurodegenerative diseases. Genetic variants at TMEM106B influence risk for the most common neuropathological subtype of FTLD, characterized by inclusions of TAR DNA-binding protein of 43 kDa (FTLD-TDP). Previous reports have shown that TMEM106B is a genetic modifier of FTLD-TDP caused by progranulin (GRN) mutations, with the major (risk) allele of rs1990622 associating with earlier age at onset of disease. Here, we report that rs1990622 genotype affects age at death in a single-site discovery cohort of FTLD patients with C9orf72 expansions (n = 14), with the major allele correlated with later age at death (p = 0.024). We replicate this modifier effect in a 30-site international neuropathological cohort of FTLD-TDP patients with C9orf72 expansions (n = 75), again finding that the major allele associates with later age at death (p = 0.016), as well as later age at onset (p = 0.019). In contrast, TMEM106B genotype does not affect age at onset or death in 241 FTLD-TDP cases negative for GRN mutations or C9orf72 expansions. Thus, TMEM106B is a genetic modifier of FTLD with C9orf72 expansions. Intriguingly, the genotype that confers increased risk for developing FTLD-TDP (major, or T, allele of rs1990622) is associated with later age at onset and death in C9orf72 expansion carriers, providing an example of sign epistasis in human neurodegenerative disease.
  •  
14.
  • Keshavan, Ashvini, et al. (author)
  • CSF biomarkers for dementia.
  • 2022
  • In: Practical neurology. - : BMJ. - 1474-7766 .- 1474-7758. ; 22:4, s. 285-294
  • Journal article (peer-reviewed)abstract
    • Although cerebrospinal fluid (CSF) biomarker testing is incorporated into some current guidelines for the diagnosis of dementia (such as England's National Institute for Health and Care Excellence (NICE)), it is not widely accessible for most patients for whom biomarkers could potentially change management. Here we share our experience of running a clinical cognitive CSF service and discuss recent developments in laboratory testing including the use of the CSF amyloid-β 42/40 ratio and automated assay platforms. We highlight the importance of collaborative working between clinicians and laboratory staff, of preanalytical sample handling, and discuss the various factors influencing interpretation of the results in appropriate clinical contexts. We advocate for broadening access to CSF biomarkers by sharing clinical expertise, protocols and interpretation with colleagues working in psychiatry and elderly care, especially when access to CSF may be part of a pathway to disease-modifying treatments for Alzheimer's disease and other forms of dementia.
  •  
15.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-15 of 15
Type of publication
journal article (12)
research review (3)
Type of content
peer-reviewed (13)
other academic/artistic (2)
Author/Editor
Witte, Torsten (6)
Nordmark, Gunnel (6)
Wahren-Herlenius, Ma ... (6)
Kelly, Jennifer A. (6)
Harley, John B. (6)
Jonsson, Roland (6)
show more...
Mariette, Xavier (6)
Rohrer, Jonathan D (6)
Ng, Wan-Fai (6)
Rischmueller, Mauree ... (6)
Brennan, Michael T. (6)
Lessard, Christopher ... (5)
Kaufman, Kenneth M. (5)
Guthridge, Joel M. (5)
Anaya, Juan-Manuel (5)
James, Judith A. (5)
Gaffney, Patrick M. (5)
Omdal, Roald (5)
Cunninghame Graham, ... (5)
Rasmussen, Astrid (5)
Liu, Ke (4)
Vyse, Timothy J. (4)
Eriksson, Per (4)
Wallace, Daniel J. (4)
Kominami, Eiki (3)
Eloranta, Maija-Leen ... (3)
Adrianto, Indra (3)
Scofield, R. Hal (3)
Simon, Hans-Uwe (3)
Mograbi, Baharia (3)
Fox, Nick C (3)
Lopez-Otin, Carlos (3)
Trojanowski, John Q (3)
Brun, Johan G. (3)
Noda, Takeshi (3)
van Swieten, John C (3)
Nishino, Ichizo (3)
Grossman, Murray (3)
Yue, Zhenyu (3)
Johansen, Terje (3)
Kvarnstrom, Marika (3)
Bowman, Simon (3)
Simonsen, Anne (3)
Kroemer, Guido (3)
Li, He (3)
Simone, Cristiano (3)
Sandri, Marco (3)
Sulzer, David (3)
Kundu, Mondira (3)
Martinet, Wim (3)
show less...
University
Karolinska Institutet (7)
Uppsala University (6)
Linköping University (6)
Lund University (4)
University of Gothenburg (3)
Umeå University (2)
show more...
Swedish University of Agricultural Sciences (2)
Stockholm University (1)
show less...
Language
English (15)
Research subject (UKÄ/SCB)
Medical and Health Sciences (13)
Natural sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view