SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Suridjan I.) "

Search: WFRF:(Suridjan I.)

  • Result 11-20 of 28
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Dong, R. C., et al. (author)
  • CSF metabolites associated with biomarkers of Alzheimer's disease pathology
  • 2023
  • In: Frontiers in Aging Neuroscience. - 1663-4365. ; 15
  • Journal article (peer-reviewed)abstract
    • IntroductionMetabolomics technology facilitates studying associations between small molecules and disease processes. Correlating metabolites in cerebrospinal fluid (CSF) with Alzheimer's disease (AD) CSF biomarkers may elucidate additional changes that are associated with early AD pathology and enhance our knowledge of the disease.MethodsThe relative abundance of untargeted metabolites was assessed in 161 individuals from the Wisconsin Registry for Alzheimer's Prevention. A metabolome-wide association study (MWAS) was conducted between 269 CSF metabolites and protein biomarkers reflecting brain amyloidosis, tau pathology, neuronal and synaptic degeneration, and astrocyte or microglial activation and neuroinflammation. Linear mixed-effects regression analyses were performed with random intercepts for sample relatedness and repeated measurements and fixed effects for age, sex, and years of education. The metabolome-wide significance was determined by a false discovery rate threshold of 0.05. The significant metabolites were replicated in 154 independent individuals from then Wisconsin Alzheimer's Disease Research Center. Mendelian randomization was performed using genome-wide significant single nucleotide polymorphisms from a CSF metabolites genome-wide association study.ResultsMetabolome-wide association study results showed several significantly associated metabolites for all the biomarkers except A & beta;42/40 and IL-6. Genetic variants associated with metabolites and Mendelian randomization analysis provided evidence for a causal association of metabolites for soluble triggering receptor expressed on myeloid cells 2 (sTREM2), amyloid & beta; (A & beta;40), & alpha;-synuclein, total tau, phosphorylated tau, and neurogranin, for example, palmitoyl sphingomyelin (d18:1/16:0) for sTREM2, and erythritol for A & beta;40 and & alpha;-synuclein.DiscussionThis study provides evidence that CSF metabolites are associated with AD-related pathology, and many of these associations may be causal.
  •  
12.
  • Dong, R. C., et al. (author)
  • Identification of plasma metabolites associated with modifiable risk factors and endophenotypes reflecting Alzheimer's disease pathology
  • 2023
  • In: European Journal of Epidemiology. - : Springer Science and Business Media LLC. - 0393-2990 .- 1573-7284.
  • Journal article (peer-reviewed)abstract
    • Modifiable factors can influence the risk for Alzheimer's disease (AD) and serve as targets for intervention; however, the biological mechanisms linking these factors to AD are unknown. This study aims to identify plasma metabolites associated with modifiable factors for AD, including MIND diet, physical activity, smoking, and caffeine intake, and test their association with AD endophenotypes to identify their potential roles in pathophysiological mechanisms. The association between each of the 757 plasma metabolites and four modifiable factors was tested in the wisconsin registry for Alzheimer's prevention cohort of initially cognitively unimpaired, asymptomatic middle-aged adults. After Bonferroni correction, the significant plasma metabolites were tested for association with each of the AD endophenotypes, including twelve cerebrospinal fluid (CSF) biomarkers, reflecting key pathophysiologies for AD, and four cognitive composite scores. Finally, causal mediation analyses were conducted to evaluate possible mediation effects. Analyses were performed using linear mixed-effects regression. A total of 27, 3, 23, and 24 metabolites were associated with MIND diet, physical activity, smoking, and caffeine intake, respectively. Potential mediation effects include beta-cryptoxanthin in the association between MIND diet and preclinical Alzheimer cognitive composite score, hippurate between MIND diet and immediate learning, glutamate between physical activity and CSF neurofilament light, and beta-cryptoxanthin between smoking and immediate learning. Our study identified several plasma metabolites that are associated with modifiable factors. These metabolites can be employed as biomarkers for tracking these factors, and they provide a potential biological pathway of how modifiable factors influence the human body and AD risk.
  •  
13.
  • Dong, R. C., et al. (author)
  • Principal components from untargeted cerebrospinal fluid metabolomics associated with Alzheimer's disease biomarkers
  • 2022
  • In: Neurobiology of Aging. - : Elsevier BV. - 0197-4580. ; 117, s. 12-23
  • Journal article (peer-reviewed)abstract
    • Studying the correlation between cerebrospinal fluid (CSF) metabolites and the Alzheimer's Disease (AD) biomarkers may offer a window to the alterations of the brain metabolome and unveil potential biological mechanisms underlying AD. In this analysis, 308 CSF metabolites from 338 individuals of Wisconsin Registry for Alzheimer's Prevention and Wisconsin Alzheimer's Disease Research Center were included in a principal component analysis (PCA). The resulted principal components (PCs) were tested for association with CSF total tau (t-tau), phosphorylated tau (p-tau), amyloid beta 42 (A beta 42), and A beta 42/40 ratio using linear regression models. Significant PCs were further tested with other CSF NeuroToolKit (NTK) and imaging biomarkers. Using a Bonferroni corrected p < 0.05, 5 PCs were significantly associated with CSF p-tau and t-tau and 3 PCs were significantly associated with CSF A beta 42. Pathway analysis suggested that these PCS were enriched in 6 pathways, including metabolism of caffeine and nicotinate and nicotinamide. This study provides evidence that CSF metabolites are associated with AD pathology through core AD biomarkers and other NTK markers and suggests potential pathways to follow up in future studies.(c) 2022 Elsevier Inc. All rights reserved.
  •  
14.
  • Ennis, G. E., et al. (author)
  • Insulin resistance is related to cognitive decline but not change in CSF biomarkers of Alzheimer's disease in non-demented adults
  • 2021
  • In: Alzheimer's & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Introduction We investigated whether insulin resistance (IR) was associated with longitudinal age-related change in cognition and biomarkers of Alzheimer's disease (AD) pathology and neurodegeneration in middle-aged and older adults who were non-demented at baseline. Methods IR was measured with homeostatic model assessment of insulin resistance (HOMA2-IR). Core AD-related cerebrospinal fluid (CSF) biomarkers and cognition were assessed, respectively, on n = 212 (1 to 5 visits) and n = 1299 (1 to 6 visits). Linear mixed models tested whether HOMA2-IR moderated age-related change in CSF biomarkers and cognition. Linear regressions tested whether HOMA2-IR x apolipoprotein E epsilon 4 allele (APOE epsilon 4) carrier status predicted amyloid beta [A beta] chronicity (estimated duration of amyloid positron emission tomography [PET] positivity) (n = 253). Results Higher HOMA2-IR was associated with greater cognitive decline but not with changes in CSF biomarkers. HOMA2-IR x APOE4 was not related to A beta chronicity but was significantly associated with CSF phosphorylated tau (P-tau)(181)/A beta(42) level. Discussion In non-demented adults IR may not be directly associated with age-related change in AD biomarkers. Additional research is needed to determine mechanisms linking IR to cognitive decline.
  •  
15.
  • Gallagher, R. L., et al. (author)
  • Neuroimaging of tissue microstructure as a marker of neurodegeneration in the AT(N) framework: defining abnormal neurodegeneration and improving prediction of clinical status
  • 2023
  • In: Alzheimer's Research & Therapy. - 1758-9193. ; 15:1
  • Journal article (peer-reviewed)abstract
    • BackgroundAlzheimer's disease involves accumulating amyloid (A) and tau (T) pathology, and progressive neurodegeneration (N), leading to the development of the AD clinical syndrome. While several markers of N have been proposed, efforts to define normal vs. abnormal neurodegeneration based on neuroimaging have been limited. Sensitive markers that may account for or predict cognitive dysfunction for individuals in early disease stages are critical.MethodsParticipants (n = 296) defined on A and T status and spanning the AD-clinical continuum underwent multi-shell diffusion-weighted magnetic resonance imaging to generate Neurite Orientation Dispersion and Density Imaging (NODDI) metrics, which were tested as markers of N. To better define N, we developed age- and sex-adjusted robust z-score values to quantify normal and AD-associated (abnormal) neurodegeneration in both cortical gray matter and subcortical white matter regions of interest. We used general logistic regression with receiver operating characteristic (ROC) and area under the curve (AUC) analysis to test whether NODDI metrics improved diagnostic accuracy compared to models that only relied on cerebrospinal fluid (CSF) A and T status (alone and in combination).ResultsUsing internal robust norms, we found that NODDI metrics correlate with worsening cognitive status and that NODDI captures early, AD neurodegenerative pathology in the gray matter of cognitively unimpaired, but A/T biomarker-positive, individuals. NODDI metrics utilized together with A and T status improved diagnostic prediction accuracy of AD clinical status, compared with models using CSF A and T status alone.ConclusionUsing a robust norms approach, we show that abnormal AD-related neurodegeneration can be detected among cognitively unimpaired individuals. Metrics derived from diffusion-weighted imaging are potential sensitive markers of N and could be considered for trial enrichment and as outcomes in clinical trials. However, given the small sample sizes, the exploratory nature of the work must be acknowledged.
  •  
16.
  • Heston, M. B., et al. (author)
  • Gut inflammation associated with age and Alzheimer's disease pathology: a human cohort study
  • 2023
  • In: Scientific Reports. - 2045-2322. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Age-related disease may be mediated by low levels of chronic inflammation ("inflammaging"). Recent work suggests that gut microbes can contribute to inflammation via degradation of the intestinal barrier. While aging and age-related diseases including Alzheimer's disease (AD) are linked to altered microbiome composition and higher levels of gut microbial components in systemic circulation, the role of intestinal inflammation remains unclear. To investigate whether greater gut inflammation is associated with advanced age and AD pathology, we assessed fecal samples from older adults to measure calprotectin, an established marker of intestinal inflammation which is elevated in diseases of gut barrier integrity. Multiple regression with maximum likelihood estimation and Satorra-Bentler corrections were used to test relationships between fecal calprotectin and clinical diagnosis, participant age, cerebrospinal fluid biomarkers of AD pathology, amyloid burden measured using 11C-Pittsburgh compound B positron emission tomography (PiB PET) imaging, and performance on cognitive tests measuring executive function and verbal learning and recall. Calprotectin levels were elevated in advanced age and were higher in participants diagnosed with amyloid-confirmed AD dementia. Additionally, among individuals with AD dementia, higher calprotectin was associated with greater amyloid burden as measured with PiB PET. Exploratory analyses indicated that calprotectin levels were also associated with cerebrospinal fluid markers of AD, and with lower verbal memory function even among cognitively unimpaired participants. Taken together, these findings suggest that intestinal inflammation is linked with brain pathology even in the earliest disease stages. Moreover, intestinal inflammation may exacerbate the progression toward AD.
  •  
17.
  • Johnson, S. C., et al. (author)
  • Identifying clinically useful biomarkers in neurodegenerative disease through a collaborative approach: the NeuroToolKit
  • 2023
  • In: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 15:1
  • Journal article (peer-reviewed)abstract
    • Background Alzheimer's disease (AD) is a complex and heterogeneous disease, which requires reliable biomarkers for diagnosis and monitoring disease activity. Preanalytical protocol and technical variability associated with biomarker immunoassays makes comparability of biomarker data across multiple cohorts difficult. This study aimed to compare cerebrospinal fluid (CSF) biomarker results across independent cohorts, including participants spanning the AD continuum.Methods Measured on the NeuroToolKit (NTK) prototype panel of immunoassays, 12 CSF biomarkers were evaluated from three cohorts (ALFA+, Wisconsin, and Abby/Blaze). A correction factor was applied to biomarkers found to be affected by preanalytical procedures (amyloid-beta(1-42), amyloid-beta(1-40), and alpha-synuclein), and results between cohorts for each disease stage were compared. The relationship between CSF biomarker concentration and cognitive scores was evaluated.Results Biomarker distributions were comparable across cohorts following correction. Correlations of biomarker values were consistent across cohorts, regardless of disease stage. Disease stage differentiation was highest for neurofilament light (NfL), phosphorylated tau, and total tau, regardless of the cohort. Correlation between biomarker concentration and cognitive scores was comparable across cohorts, and strongest for NfL, chitinase-3-like protein-1 (YKL40), and glial fibrillary acidic protein.Discussion The precision of the NTK enables merging of biomarker datasets, after correction for preanalytical confounders. Assessment of multiple cohorts is crucial to increase power in future studies into AD pathogenesis.
  •  
18.
  • Jonaitis, E. M., et al. (author)
  • Crosswalk study on blood collection-tube types for Alzheimer's disease biomarkers
  • 2022
  • In: Alzheimer's & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Introduction Blood-based Alzheimer's disease (AD) biomarkers show promise, but pre-analytical protocol differences may pose problems. We examined seven AD blood biomarkers (amyloid beta [A beta]42${\rm{A\beta }}]{_{42}}$, A beta 40${\rm{A}}{{{\beta}}_{40}}$, phosphorylatedtau[p-tau181${\rm{phosphorylated\;tau\;[p - ta}}{{\rm{u}}_{181}}$, total tau [t-tau], neurofilament light chain [NfL], A beta 4240,${\rm{A}}{{{\beta}}_{\frac{{42}}{{40}}}},$ and p-tau181A beta 42$\frac{{{\rm{p - ta}}{{\rm{u}}_{181}}}}{{{\rm{A}}{{{\beta}}_{42}}}}$) in three collection tube types (ethylenediaminetetraacetic acid [EDTA] plasma, heparin plasma, serum). Methods Plasma and serum were obtained from cerebrospinal fluid or amyloid positron emission tomography-positive and -negative participants (N = 38) in the Wisconsin Registry for Alzheimer's Prevention. We modeled AD biomarker values observed in EDTA plasma versus heparin plasma and serum, and assessed correspondence with brain amyloidosis. Results Results suggested bias due to tube type, but crosswalks are possible for some analytes, with excellent model fit for NfL (R2${{\rm{R}}<^>2}\;$= 0.94), adequate for amyloid (R2${{\rm{R}}<^>2}\;$= 0.40-0.69), and weaker for t-tau (R2${{\rm{R}}<^>2}\;$= 0.04-0.42) and p-tau181${\rm{p - ta}}{{\rm{u}}_{181}}$ ( R2${{\rm{R}}<^>2}\;$= 0.22-0.29). Brain amyloidosis differentiated several measures, especially EDTA plasma pTau181A beta 42$\frac{{{\rm{pTa}}{{\rm{u}}_{181}}}}{{{\rm{A}}{\beta _{42}}}}$ (d$d\;$= 1.29). Discussion AD biomarker concentrations vary by tube type. However, correlations for some biomarkers support harmonization across types, suggesting cautious optimism for use in banked blood.
  •  
19.
  • Lessa Benedet, Andréa, et al. (author)
  • Differences Between Plasma and Cerebrospinal Fluid Glial Fibrillary Acidic Protein Levels Across the Alzheimer Disease Continuum
  • 2021
  • In: Jama Neurology. - : American Medical Association (AMA). - 2168-6149. ; 78:12, s. 1471-1483
  • Journal article (peer-reviewed)abstract
    • Question What are the levels of plasma glial fibrillary acidic protein (GFAP) throughout the Alzheimer disease (AD) continuum, and how do they compare with the levels of cerebrospinal fluid (CSF) GFAP? Findings In this cross-sectional study, plasma GFAP levels were elevated in the preclinical and symptomatic stages of AD, with levels higher than those of CSF GFAP. Plasma GFAP had a higher accuracy than CSF GFAP to discriminate between amyloid-beta (A beta)-positive and A beta-negative individuals, also at the preclinical stage. Meaning This study suggests that plasma GFAP is a sensitive biomarker that significantly outperforms CSF GFAP in indicating A beta pathology in the early stages of AD. Importance Glial fibrillary acidic protein (GFAP) is a marker of reactive astrogliosis that increases in the cerebrospinal fluid (CSF) and blood of individuals with Alzheimer disease (AD). However, it is not known whether there are differences in blood GFAP levels across the entire AD continuum and whether its performance is similar to that of CSF GFAP. Objective To evaluate plasma GFAP levels throughout the entire AD continuum, from preclinical AD to AD dementia, compared with CSF GFAP. Design, Setting, and Participants This observational, cross-sectional study collected data from July 29, 2014, to January 31, 2020, from 3 centers. The Translational Biomarkers in Aging and Dementia (TRIAD) cohort (Montreal, Canada) included individuals in the entire AD continuum. Results were confirmed in the Alzheimer's and Families (ALFA+) study (Barcelona, Spain), which included individuals with preclinical AD, and the BioCogBank Paris Lariboisiere cohort (Paris, France), which included individuals with symptomatic AD. Main Outcomes and Measures Plasma and CSF GFAP levels measured with a Simoa assay were the main outcome. Other measurements included levels of CSF amyloid-beta 42/40 (A beta 42/40), phosphorylated tau181 (p-tau181), neurofilament light (NfL), Chitinase-3-like protein 1 (YKL40), and soluble triggering receptor expressed on myeloid cells 2 (sTREM2) and levels of plasma p-tau181 and NfL. Results of amyloid positron emission tomography (PET) were available in TRIAD and ALFA+, and results of tau PET were available in TRIAD. Results A total of 300 TRIAD participants (177 women [59.0%]; mean [SD] age, 64.6 [17.6] years), 384 ALFA+ participants (234 women [60.9%]; mean [SD] age, 61.1 [4.7] years), and 187 BioCogBank Paris Lariboisiere participants (116 women [62.0%]; mean [SD] age, 69.9 [9.2] years) were included. Plasma GFAP levels were significantly higher in individuals with preclinical AD in comparison with cognitively unimpaired (CU) A beta-negative individuals (TRIAD: A beta-negative mean [SD], 185.1 [93.5] pg/mL, A beta-positive mean [SD], 285.0 [142.6] pg/mL; ALFA+: A beta-negative mean [SD], 121.9 [42.4] pg/mL, A beta-positive mean [SD], 169.9 [78.5] pg/mL). Plasma GFAP levels were also higher among individuals in symptomatic stages of the AD continuum (TRIAD: CU A beta-positive mean [SD], 285.0 [142.6] pg/mL, mild cognitive impairment [MCI] A beta-positive mean [SD], 332.5 [153.6] pg/mL; AD mean [SD], 388.1 [152.8] pg/mL vs CU A beta-negative mean [SD], 185.1 [93.5] pg/mL; Paris: MCI A beta-positive, mean [SD], 368.6 [158.5] pg/mL; AD dementia, mean [SD], 376.4 [179.6] pg/mL vs CU A beta-negative mean [SD], 161.2 [67.1] pg/mL). Plasma GFAP magnitude changes were consistently higher than those of CSF GFAP. Plasma GFAP more accurately discriminated A beta-positive from A beta-negative individuals than CSF GFAP (area under the curve for plasma GFAP, 0.69-0.86; area under the curve for CSF GFAP, 0.59-0.76). Moreover, plasma GFAP levels were positively associated with tau pathology only among individuals with concomitant A beta pathology. Conclusions and Relevance This study suggests that plasma GFAP is a sensitive biomarker for detecting and tracking reactive astrogliosis and A beta pathology even among individuals in the early stages of AD. This cross-sectional cohort study evaluates plasma glial fibrillary acidic protein levels throughout the entire Alzheimer disease continuum, from preclinical Alzheimer disease to Alzheimer disease dementia, compared with cerebrospinal fluid glial fibrillary acidic protein.
  •  
20.
  • Morrow, A., et al. (author)
  • Cerebrospinal Fluid Sphingomyelins in Alzheimer's Disease, Neurodegeneration, and Neuroinflammation
  • 2022
  • In: Journal of Alzheimers Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 90:2, s. 667-680
  • Journal article (peer-reviewed)abstract
    • Background: Sphingomyelin (SM) levels have been associated with Alzheimer's disease (AD), but the association direction has been inconsistent and research on cerebrospinal fluid (CSF) SMs has been limited by sample size, breadth of SMs examined, and diversity of biomarkers available. Objective: Here, we seek to build on our understanding of the role of SM metabolites in AD by studying a broad range of CSF SMs and biomarkers of AD, neurodegeneration, and neuroinflammation. Methods: Leveraging two longitudinal AD cohorts with metabolome-wide CSF metabolomics data (n = 502), we analyzed the relationship between the levels of 12 CSF SMs, and AD diagnosis and biomarkers of pathology, neurodegeneration, and neuroinflammation using logistic, linear, and linear mixed effects models. Results: No SMs were significantly associated with AD diagnosis, mild cognitive impairment, or amyloid biomarkers. Phosphorylated tau, neurofilament light, alpha-synuclein, neurogranin, soluble triggering receptor expressed on myeloid cells 2, and chitinase-3-like-protein 1 were each significantly, positively associated with at least 5 of the SMs. Conclusion: The associations between SMs and biomarkers of neurodegeneration and neuroinflammation, but not biomarkers of amyloid or diagnosis of AD, point to SMs as potential biomarkers for neurodegeneration and neuroinflammation that may not be AD-specific.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-20 of 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view