SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Van Eylen Vincent) "

Search: WFRF:(Van Eylen Vincent)

  • Result 11-20 of 43
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Diaz, Matias R., et al. (author)
  • TOI-132 b: A short-period planet in the Neptune desert transiting a V=11.3 G-type star
  • 2020
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 493:1, s. 973-985
  • Journal article (peer-reviewed)abstract
    • The Neptune desert is a feature seen in the radius-period plane, whereby a notable dearth of short period, Neptune-like planets is found. Here, we report the Transiting Exoplanet Survey Satellite (TESS) discovery of a new short-period planet in the Neptune desert, orbiting the G-type dwarf TYC 8003-1117-1 (TOI-132). TESS photometry shows transit-like dips at the level of similar to 1400 ppm occurring every similar to 2.11 d. High-precision radial velocity follow-up with High Accuracy Radial Velocity Planet Searcher confirmed the planetary nature of the transit signal and provided a semi-amplitude radial velocity variation of 11.38(-0.85)(+0.84) m s(-1), which, when combined with the stellar mass of 0.97 +/- 0.06 M-circle dot, provides a planetary mass of 22.40(-1.92)(+1.90) M-circle plus. Modelling the TESS light curve returns a planet radius of 3.42(-0.14)(+0.13) R-circle plus , and therefore the planet bulk density is found to be 3.08(-0.46)(+0.44) g cm(-3). Planet structure models suggest that the bulk of the planet mass is in the form of a rocky core, with an atmospheric mass fraction of 4.3(-2.3)(+1.2) percent. TOI-132 b is a TESS Level 1 Science Requirement candidate, and therefore priority follow-up will allow the search for additional planets in the system, whilst helping to constrain low-mass planet formation and evolution models, particularly valuable for better understanding of the Neptune desert.
  •  
12.
  • Fridlund, Malcolm, 1952, et al. (author)
  • The TOI-763 system: Sub-Neptunes orbiting a Sun-like star
  • 2020
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 498:3, s. 4503-4517
  • Journal article (peer-reviewed)abstract
    • We report the discovery of a planetary system orbiting TOI-763(aka CD-39 7945), a V = 10.2, high proper motion G-type dwarf star that was photometrically monitored by the TESS space mission in Sector 10. We obtain and model the stellar spectrum and find an object slightly smaller than the Sun, and somewhat older, but with a similar metallicity. Two planet candidates were found in the light curve to be transiting the star. Combining TESS transit photometry with HARPS high-precision radial velocity (RV) follow-up measurements confirm the planetary nature of these transit signals. We determine masses, radii, and bulk densities of these two planets. A third planet candidate was discovered serendipitously in the RV data. The inner transiting planet, TOI-763 b, has an orbital period of Pb = 5.6 d, a mass of Mb = 9.8 ± 0.8 M⊕, and a radius of Rb = 2.37 ± 0.10 R⊕. The second transiting planet, TOI-763 c, has an orbital period of Pc = 12.3 d, a mass of Mc = 9.3 ± 1.0 M⊕, and a radius of Rc = 2.87 ± 0.11 R⊕. We find the outermost planet candidate to orbit the star with a period of ∼48 d. If confirmed as a planet, it would have a minimum mass of Md = 9.5 ± 1.6 M⊕. We investigated the TESS light curve in order to search for a mono transit by planet d without success. We discuss the importance and implications of this planetary system in terms of the geometrical arrangements of planets orbiting G-type stars.
  •  
13.
  • Gandolfi, D., et al. (author)
  • TESS's first planet: A super-Earth transiting the naked-eye star π Mensae
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 619
  • Journal article (peer-reviewed)abstract
    • We report on the confirmation and mass determination of π Men c, the first transiting planet discovered by NASA's TESS space mission. π Men is a naked-eye (V = 5.65 mag), quiet G0 V star that was previously known to host a sub-stellar companion (π Men b) on a longperiod (Porb = 2091 days), eccentric (e = 0.64) orbit. Using TESS time-series photometry, combined with Gaia data, published UCLES at AAT Doppler measurements, and archival HARPS at ESO-3.6m radial velocities, we found that π Men c is a close-in planet with an orbital period of Porb = 6.27 days, a mass of Mc = 4.52 ± 0.81 Mo, and a radius of Rc = 2.06 ± 0.03 Ro. Based on the planet's orbital period and size, π Men c is a super-Earth located at, or close to, the radius gap, while its mass and bulk density suggest it may have held on to a significant atmosphere. Because of the brightness of the host star, this system is highly suitable for a wide range of further studies to characterize the planetary atmosphere and dynamical properties. We also performed an asteroseismic analysis of the TESS data and detected a hint of power excess consistent with the seismic values expected for this star, although this result depends on the photometric aperture used to extract the light curve. This marginal detection is expected from pre-launch simulations hinting at the asteroseismic potential of the TESS mission for longer, multi-sector observations and/or for more evolved bright stars.
  •  
14.
  • Gandolfi, Davide, et al. (author)
  • The Transiting Multi-planet System HD 3167: A 5.7 M ⊕ Super-Earth and an 8.3 M ⊕ Mini-Neptune
  • 2017
  • In: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 154:3, s. 123-
  • Journal article (peer-reviewed)abstract
    • HD 3167 is a bright (V = 8.9 mag) K0 V star observed by NASA’s K2 space mission during its Campaign 8. It has recently been found to host two small transiting planets, namely, HD 3167b, an ultra-short-period (0.96 days) super-Earth, and HD 3167c, a mini-Neptune on a relatively long-period orbit (29.85 days). Here we present an intensive radial velocity (RV) follow-up of HD 3167 performed with the FIES@NOT, HARPS@ESO-3.6 m, and HARPS-N@TNG spectrographs. We revise the system parameters and determine radii, masses, and densities of the two transiting planets by combining the K2 photometry with our spectroscopic data. With a mass of 5.69 ± 0.44 M⊕, a radius of 1.574 ± 0.054 R⊕, and a mean density of {8.00}-0.98+1.10 g cm^-3, HD 3167b joins the small group of ultra-short-period planets known to have rocky terrestrial compositions. HD 3167c has a mass of 8.33-1.85+1.79 M⊕ and a radius of 2.74}-0.100+0.106 R⊕, yielding a mean density of 2.21-0.53+0.56 g cm^-3, indicative of a planet with a composition comprising a solid core surrounded by a thick atmospheric envelope. The rather large pressure scale height (∼350 km) and the brightness of the host star make HD 3167c an ideal target for atmospheric characterization via transmission spectroscopy across a broad range of wavelengths. We found evidence of additional signals in the RV measurements but the currently available data set does not allow us to draw any firm conclusions on the origin of the observed variation.
  •  
15.
  • Gandolfi, D., et al. (author)
  • The Transiting Multi-planet System HD15337: Two Nearly Equal-mass Planets Straddling the Radius Gap
  • 2019
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 876:2
  • Journal article (peer-reviewed)abstract
    • We report the discovery of a super-Earth and a sub-Neptune transiting the star HD 15337 (TOI-402, TIC 120896927), a bright (V = 9) K1 dwarf observed by the Transiting Exoplanet Survey Satellite (TESS) in Sectors 3 and 4. We combine the TESS photometry with archival High Accuracy Radial velocity Planet Searcher spectra to confirm the planetary nature of the transit signals and derive the masses of the two transiting planets. With an orbital period of 4.8 days, a mass of {7.51}-1.01+1.09 {M}\oplus and a radius of 1.64 ± 0.06 R ⊕, HD 15337 b joins the growing group of short-period super-Earths known to have a rocky terrestrial composition. The sub-Neptune HD 15337 c has an orbital period of 17.2 days, a mass of {8.11}-1.69+1.82 {{{M}}}\oplus , and a radius of 2.39 ± 0.12 R ⊕, suggesting that the planet might be surrounded by a thick atmospheric envelope. The two planets have similar masses and lie on opposite sides of the radius gap, and are thus an excellent testbed for planet formation and evolution theories. Assuming that HD 15337 c hosts a hydrogen-dominated envelope, we employ a recently developed planet atmospheric evolution algorithm in a Bayesian framework to estimate the history of the high-energy (extreme ultraviolet and X-ray) emission of the host star. We find that at an age of 150 Myr, the star possessed on average between 3.7 and 127 times the high-energy luminosity of the current Sun.
  •  
16.
  • Georgieva, Iskra, 1987, et al. (author)
  • TOI-733 b : A planet in the small-planet radius valley orbiting a Sun-like star
  • 2023
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 674
  • Journal article (peer-reviewed)abstract
    • We report the discovery of a hot (Teq ≈ 1055 K) planet in the small-planet radius valley that transits the Sun-like star TOI-733. It was discovered as part of the KESPRINT follow-up program of TESS planets carried out with the HARPS spectrograph. TESS photometry from sectors 9 and 36 yields an orbital period of {equation presented} days and a radius of {equation presented}. Multi-dimensional Gaussian process modelling of the radial velocity measurements from HARPS and activity indicators gives a semi-amplitude of K = 2.23 ± 0.26 m s-1, translating into a planet mass of {equation presented}. These parameters imply that the planet is of moderate density ({equation presented}) and place it in the transition region between rocky and volatile-rich planets with H/He-dominated envelopes on the mass-radius diagram. Combining these with stellar parameters and abundances, we calculated planet interior and atmosphere models, which in turn suggest that TOI-733 b has a volatile-enriched, most likely secondary outer envelope, and may represent a highly irradiated ocean world. This is one of only a few such planets around G-type stars that are well characterised.
  •  
17.
  • Goffo, Elisa, et al. (author)
  • Company for the Ultra-high Density, Ultra-short Period Sub-Earth GJ 367 b: Discovery of Two Additional Low-mass Planets at 11.5 and 34 Days
  • 2023
  • In: Astrophysical Journal Letters. - : Institute of Physics (IOP). - 2041-8213 .- 2041-8205. ; 955:1
  • Journal article (peer-reviewed)abstract
    • GJ 367 is a bright (V ≈ 10.2) M1 V star that has been recently found to host a transiting ultra-short period sub-Earth on a 7.7 hr orbit. With the aim of improving the planetary mass and radius and unveiling the inner architecture of the system, we performed an intensive radial velocity follow-up campaign with the HARPS spectrograph—collecting 371 high-precision measurements over a baseline of nearly 3 yr—and combined our Doppler measurements with new TESS observations from sectors 35 and 36. We found that GJ 367 b has a mass of M b = 0.633 ± 0.050 M ⊕ and a radius of R b = 0.699 ± 0.024 R ⊕, corresponding to precisions of 8% and 3.4%, respectively. This implies a planetary bulk density of ρ b = 10.2 ± 1.3 g cm−3, i.e., 85% higher than Earth’s density. We revealed the presence of two additional non-transiting low-mass companions with orbital periods of ∼11.5 and 34 days and minimum masses of M c sin i c = 4.13 ± 0.36 M ⊕ and M d sin i d = 6.03 ± 0.49 M ⊕, respectively, which lie close to the 3:1 mean motion commensurability. GJ 367 b joins the small class of high-density planets, namely the class of super-Mercuries, being the densest ultra-short period small planet known to date. Thanks to our precise mass and radius estimates, we explored the potential internal composition and structure of GJ 367 b, and found that it is expected to have an iron core with a mass fraction of 0.91 − 0.23 + 0.07 . How this iron core is formed and how such a high density is reached is still not clear, and we discuss the possible pathways of formation of such a small ultra-dense planet.
  •  
18.
  • Hatzes, A., et al. (author)
  • A Radial Velocity Study of the Planetary System of π Mensae: Improved Planet Parameters for pi Mensae c and a Third Planet on a 125 Day Orbit
  • 2022
  • In: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 163:5
  • Journal article (peer-reviewed)abstract
    • π Men hosts a transiting planet detected by the Transiting Exoplanet Survey Satellite space mission and an outer planet in a 5.7 yr orbit discovered by radial velocity (RV) surveys. We studied this system using new RV measurements taken with the HARPS spectrograph on ESO's 3.6 m telescope, as well as archival data. We constrain the stellar RV semiamplitude due to the transiting planet, π Men c, as K c = 1.21 ± 0.12 m s-1, resulting in a planet mass of M c = 3.63 ± 0.38 M. A planet radius of R c = 2.145 ± 0.015 R yields a bulk density of ρ c = 2.03 ± 0.22 g cm-3. The precisely determined density of this planet and the brightness of the host star make π Men c an excellent laboratory for internal structure and atmospheric characterization studies. Our HARPS RV measurements also reveal compelling evidence for a third body, π Men d, with a minimum mass M d sin i d = 13.38 ± 1.35 M orbiting with a period of P orb,d = 125 days on an eccentric orbit (e d = 0.22). A simple dynamical analysis indicates that the orbit of π Men d is stable on timescales of at least 20 Myr. Given the mutual inclination between the outer gaseous giant and the inner rocky planet and the presence of a third body at 125 days, π Men is an important planetary system for dynamical and formation studies.
  •  
19.
  • Hirano, T., et al. (author)
  • An Earth-sized Planet around an M5 Dwarf Star at 22 pc
  • 2023
  • In: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 165:3
  • Journal article (peer-reviewed)abstract
    • We report on the discovery of an Earth-sized transiting planet (R p = 1.015 ± 0.051 R ⊕) in a P = 4.02 day orbit around K2-415 (EPIC 211414619), an M5V star at 22 pc. The planet candidate was first identified by analyzing the light-curve data obtained by the K2 mission, and it is here shown to exist in the most recent data from TESS. Combining the light curves with the data secured by our follow-up observations, including high-resolution imaging and near-infrared spectroscopy with IRD, we rule out false-positive scenarios, finding a low false-positive probability of 2 × 10−4. Based on IRD’s radial velocities of K2-415, which were sparsely taken over three years, we obtain a planet mass of 3.0 ± 2.7 M ⊕ (M p < 7.5 M ⊕ at 95% confidence) for K2-415b. Being one of the lowest-mass stars (≈0.16 M ⊙) known to host an Earth-sized transiting planet, K2-415 will be an interesting target for further follow-up observations, including additional radial velocity monitoring and transit spectroscopy.
  •  
20.
  • Hirano, Teruyuki, et al. (author)
  • Exoplanets around Low-mass Stars Unveiled by K2
  • 2018
  • In: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 155:3, s. 127-
  • Journal article (peer-reviewed)abstract
    • We present the detection and follow-up observations of planetary candidates around low-mass stars observed by the K2 mission. Based on light-curve analysis, adaptive-optics imaging, and optical spectroscopy at low and high resolution (including radial velocity measurements), we validate 16 planets around 12 low-mass stars observed during K2 campaigns 5–10. Among the 16 planets, 12 are newly validated, with orbital periods ranging from 0.96 to 33 days. For one of the planets (K2-151b), we present ground-based transit photometry, allowing us to refine the ephemerides. Combining our K2 M-dwarf planets together with the validated or confirmed planets found previously, we investigate the dependence of planet radius R p on stellar insolation and metallicity [Fe/H]. We confirm that for periods P ≲ 2 days, planets with a radius Rp≳ 2 R⊕ are less common than planets with a radius between 1–2 R⊕. We also see a hint of the “radius valley” between 1.5 and 2 R⊕, which has been seen for close-in planets around FGK stars. These features in the radius/period distribution could be attributed to photoevaporation of planetary envelopes by high-energy photons from the host star, as they have for FGK stars. For the M dwarfs, though, the features are not as well defined, and we cannot rule out other explanations such as atmospheric loss from internal planetary heat sources or truncation of the protoplanetary disk. There also appears to be a relation between planet size and metallicity: the few planets larger than about 3 R⊕ are found around the most metal-rich M dwarfs.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-20 of 43

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view