SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Viikari Jorma) "

Search: WFRF:(Viikari Jorma)

  • Result 11-20 of 42
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Horikoshi, Momoko, et al. (author)
  • Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation.
  • 2015
  • In: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 11:7
  • Journal article (peer-reviewed)abstract
    • Reference panels from the 1000 Genomes (1000G) Project Consortium provide near complete coverage of common and low-frequency genetic variation with minor allele frequency ≥0.5% across European ancestry populations. Within the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium, we have undertaken the first large-scale meta-analysis of genome-wide association studies (GWAS), supplemented by 1000G imputation, for four quantitative glycaemic and obesity-related traits, in up to 87,048 individuals of European ancestry. We identified two loci for body mass index (BMI) at genome-wide significance, and two for fasting glucose (FG), none of which has been previously reported in larger meta-analysis efforts to combine GWAS of European ancestry. Through conditional analysis, we also detected multiple distinct signals of association mapping to established loci for waist-hip ratio adjusted for BMI (RSPO3) and FG (GCK and G6PC2). The index variant for one association signal at the G6PC2 locus is a low-frequency coding allele, H177Y, which has recently been demonstrated to have a functional role in glucose regulation. Fine-mapping analyses revealed that the non-coding variants most likely to drive association signals at established and novel loci were enriched for overlap with enhancer elements, which for FG mapped to promoter and transcription factor binding sites in pancreatic islets, in particular. Our study demonstrates that 1000G imputation and genetic fine-mapping of common and low-frequency variant association signals at GWAS loci, integrated with genomic annotation in relevant tissues, can provide insight into the functional and regulatory mechanisms through which their effects on glycaemic and obesity-related traits are mediated.
  •  
12.
  • Horikoshi, Momoko, et al. (author)
  • New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism.
  • 2013
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:1
  • Journal article (peer-reviewed)abstract
    • Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood. Previous genome-wide association studies of birth weight identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes and a second variant, near CCNL1, with no obvious link to adult traits. In an expanded genome-wide association meta-analysis and follow-up study of birth weight (of up to 69,308 individuals of European descent from 43 studies), we have now extended the number of loci associated at genome-wide significance to 7, accounting for a similar proportion of variance as maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes, ADRB1 with adult blood pressure and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism.
  •  
13.
  • Hruby, Adela, et al. (author)
  • Higher Magnesium Intake Is Associated with Lower Fasting Glucose and Insulin, with No Evidence of Interaction with Select Genetic Loci, in a Meta-Analysis of 15 CHARGE Consortium Studies
  • 2013
  • In: Journal of Nutrition. - : Elsevier BV. - 0022-3166 .- 1541-6100. ; 143:3, s. 345-353
  • Journal article (peer-reviewed)abstract
    • Favorable associations between magnesium intake and glycemic traits, such as fasting glucose and insulin, are observed in observational and clinical studies, but whether genetic variation affects these associations is largely unknown. We hypothesized that single nucleotide polymorphisms (SNPs) associated with either glycemic traits or magnesium metabolism affect the association between magnesium intake and fasting glucose and insulin. Fifteen studies from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium provided data from up to 52,684 participants of European descent without known diabetes. In fixed-effects meta-analyses, we quantified 1) cross-sectional associations of dietary magnesium intake with fasting glucose (mmol/L) and insulin (In-pmol/L) and 2) interactions between magnesium intake and SNPs related to fasting glucose (16 SNPs), insulin (2 SNPs), or magnesium (8 SNPs) on fasting glucose and insulin. After adjustment for age, sex, energy intake, BMI, and behavioral risk factors, magnesium (per 50-mg/d increment) was inversely associated with fasting glucose [beta = -0.009 mmol/L (95% CI: -0.013, -0.005), P< 0.0001] and insulin (-0.020 In-pmo/L (95% CI: -0.024, -0.017), P< 0.0001]. No magnesium-related SNP or interaction between any SNP and magnesium reached significance after correction for multiple testing. However, rs2274924 in magnesium transporter-encoding TRPM6 showed a nominal association (uncorrected P= 0.03) with glucose, and rs11558471 in SLC30A8and rs3740393 near CNNM2showed a nominal interaction (uncorrected, both P = 0.02) with magnesium on glucose. Consistent with other studies, a higher magnesium intake was associated with lower fasting glucose and insulin. Nominal evidence of TRPM6 influence and magnesium interaction with select loci suggests that further investigation is warranted. J. Nutr. 143: 345-353, 2013.
  •  
14.
  • Huang, Tao, et al. (author)
  • Dairy Consumption and Body Mass Index Among Adults : Mendelian Randomization Analysis of 184802 Individuals from 25 Studies
  • 2018
  • In: Clinical Chemistry. - : Oxford University Press (OUP). - 0009-9147 .- 1530-8561. ; 64:1, s. 183-191
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Associations between dairy intake and body mass index (BMI) have been inconsistently observed in epidemiological studies, and the causal relationship remains ill defined.METHODS: We performed Mendelian randomization (MR) analysis using an established dairy intake-associated genetic polymorphism located upstream of the lactase gene (LCT-13910 C/T, rs4988235) as an instrumental variable (IV). Linear regression models were fitted to analyze associations between (a) dairy intake and BMI, (b) rs4988235 and dairy intake, and (c) rs4988235 and BMI in each study. The causal effect of dairy intake on BMI was quantified by IV estimators among 184802 participants from 25 studies.RESULTS: Higher dairy intake was associated with higher BMI (β = 0.03 kg/m2 per serving/day; 95% CI, 0.00–0.06; P = 0.04), whereas the LCT genotype with 1 or 2 T allele was significantly associated with 0.20 (95% CI, 0.14–0.25) serving/day higher dairy intake (P = 3.15 × 10−12) and 0.12 (95% CI, 0.06–0.17) kg/m2 higher BMI (P = 2.11 × 10−5). MR analysis showed that the genetically determined higher dairy intake was significantly associated with higher BMI (β = 0.60 kg/m2 per serving/day; 95% CI, 0.27–0.92; P = 3.0 × 10−4).CONCLUSIONS: The present study provides strong evidence to support a causal effect of higher dairy intake on increased BMI among adults.
  •  
15.
  • Juonala, Markus, et al. (author)
  • Geographic Origin as a Determinant of Carotid Artery Intima-Media Thickness and Brachial Artery Flow-Mediated Dilation. The Cardiovascular Risk in Young Finns Study.
  • 2005
  • In: Arteriosclerosis, Thrombosis and Vascular Biology. - 1524-4636. ; 25:2, s. 392-398
  • Journal article (peer-reviewed)abstract
    • Objective - People living in eastern Finland have approximate to 40% higher coronary heart disease mortality rates than western Finns. Whether this is because of genetic or environmental factors is unknown. We examined the effect of geographic family origin on subclinical atherosclerosis among young Finns. Methods and Results - As part of a longitudinal follow-up study, we measured carotid intima-media thickness (IMT) in 2264 and brachial flow-mediated dilation (FMD) in 2109 white adults, aged 24 to 39 years. Subjects from eastern Finland had greater IMT and lower FMD compared with western subjects. These differences accentuated when the subjects' family origin ( grandparents' birthplace) was taken into account and remained significant after adjusting for several environmental factors. Among subjects with all grandparents born in eastern or western Finland, IMTs were ( mean +/- SEM) 0.592 +/- 0.003 versus 0.565 +/- 0.005 mm ( P < 0.0001), respectively. The corresponding FMD values were 7.61 +/- 0.15% versus 8.75 +/- 0.26%; P < 0.01. The number of grandparents born in eastern Finland was directly related to IMT ( P < 0.0001) and inversely to FMD ( P < 0.05). Conclusions - Young adults originating from eastern Finland have greater carotid IMT and lower brachial FMD than western Finns. Consistent with a hereditable component predisposing to or protecting from atherosclerosis, these differences accentuated when subjects' family origin was taken into account.
  •  
16.
  • Kato, Norihiro, et al. (author)
  • Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation
  • 2015
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 47:11, s. 1282-1293
  • Journal article (peer-reviewed)abstract
    • We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10−11 to 5.0 × 10−21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10−6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation.
  •  
17.
  • Kemp, John P, et al. (author)
  • Does bone resorption stimulate periosteal expansion? A cross sectional analysis of β-C-telopeptides of type I collagen (CTX), genetic markers of the RANKL pathway, and periosteal circumference as measured by pQCT.
  • 2014
  • In: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. - : Wiley. - 1523-4681. ; 29:4, s. 1015-1024
  • Journal article (peer-reviewed)abstract
    • We hypothesised that bone resorption acts to increase bone strength through stimulation of periosteal expansion. Hence, we examined whether bone resorption, as reflected by serum β-C-telopeptides of type I collagen (CTX), is positively associated with periosteal circumference (PC), in contrast to inverse associations with parameters related to bone remodelling such as cortical bone mineral density (BMDC ). CTX and mid-tibial pQCT scans were available in 1130 adolescents (mean age 15.5 years) from the Avon Longitudinal Study of Parents and Children (ALSPAC). Analyses were adjusted for age, gender, time of sampling, tanner stage, lean mass, fat mass and height. CTX was positively related to PC [β= 0.19 (0.13, 0.24)] (coefficient=SD change per SD increase in CTX, 95% CI)], but inversely associated with BMDC [β= -0.46 (-0.52,-0.40)] and cortical thickness [β= -0.11 (-0.18, -0.03)]. CTX was positively related to bone strength as reflected by the strength-strain index (SSI) [β= 0.09 (0.03, 0.14)]. To examine the causal nature of this relationship, we then analysed whether SNPs within key osteoclast regulatory genes, known to reduce areal/cortical BMD, conversely increase PC. Fifteen such genetic variants within or proximal to genes encoding RANK, RANKL and OPG were identified by literature search. Six of the 15 alleles that were inversely related to BMD were positively related to CTX (P<0.05 cut-off) (n=2379). Subsequently, we performed a meta-analysis of associations between these SNPs and PC in ALSPAC (n=3382), Gothenburg Osteoporosis and Obesity Determinants (GOOD) (n=938) and the Young Finns Study (YFS) (n=1558). Five of the 15 alleles that were inversely related to BMD were positively related to PC (P<0.05 cut-off). We conclude that despite having lower BMD, individuals with a genetic predisposition to higher bone resorption have greater bone size, suggesting that higher bone resorption is permissive for greater periosteal expansion.
  •  
18.
  • Kilpeläinen, Tuomas O, et al. (author)
  • Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health.
  •  
19.
  • Koettgen, Anna, et al. (author)
  • Genome-wide association analyses identify 18 new loci associated with serum urate concentrations
  • 2013
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:2, s. 145-154
  • Journal article (peer-reviewed)abstract
    • Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with serum urate concentrations (18 new regions in or near TRIM46, INHBB, SEMBT1, TMEM171, VEGFA, BAZ1B, PRKAG2, STC1, HNF4G, A1CF, ATXN2, UBE2Q2, IGF1R, NFAT5, MAF, HLF, ACVR1B-ACVRL1 and B3GNT4). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry. We further characterized these loci for associations with gout, transcript expression and the fractional excretion of urate. Network analyses implicate the inhibins-activins signaling pathways and glucose metabolism in systemic urate control. New candidate genes for serum urate concentration highlight the importance of metabolic control of urate production and excretion, which may have implications for the treatment and prevention of gout.
  •  
20.
  • Lango Allen, Hana, et al. (author)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height.
  • 2010
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 467:7317, s. 832-8
  • Journal article (peer-reviewed)abstract
    • Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-20 of 42
Type of publication
journal article (41)
research review (1)
Type of content
peer-reviewed (42)
Author/Editor
Viikari, Jorma (28)
Hofman, Albert (28)
Uitterlinden, André ... (27)
Rivadeneira, Fernand ... (23)
Raitakari, Olli (23)
Lehtimäki, Terho (21)
show more...
Kähönen, Mika (20)
Prokopenko, Inga (20)
Raitakari, Olli T (19)
van Duijn, Cornelia ... (19)
McCarthy, Mark I (18)
Esko, Tõnu (17)
Chasman, Daniel I. (16)
Metspalu, Andres (16)
Pramstaller, Peter P ... (16)
Wilson, James F. (16)
Eriksson, Johan G. (16)
Harris, Tamara B (16)
Ferrucci, Luigi (16)
Salomaa, Veikko (15)
Hu, Frank B. (15)
Liu, Yongmei (15)
Loos, Ruth J F (15)
Siscovick, David S. (15)
Tanaka, Toshiko (15)
Jula, Antti (14)
Perola, Markus (14)
Campbell, Harry (14)
Ohlsson, Claes, 1965 (14)
Ridker, Paul M. (14)
Gieger, Christian (14)
Feitosa, Mary F. (14)
Rudan, Igor (13)
Wichmann, H. Erich (13)
Gyllensten, Ulf (13)
Hayward, Caroline (13)
Gudnason, Vilmundur (13)
Polasek, Ozren (13)
Isaacs, Aaron (13)
Vandenput, Liesbeth, ... (12)
North, Kari E. (12)
Pedersen, Oluf (12)
Hansen, Torben (12)
Johansson, Åsa (12)
Wright, Alan F. (12)
Lehtimaki, Terho (12)
Vitart, Veronique (12)
Lyytikäinen, Leo-Pek ... (12)
Heid, Iris M (12)
Vollenweider, Peter (12)
show less...
University
Uppsala University (29)
Lund University (25)
University of Gothenburg (18)
Karolinska Institutet (14)
Umeå University (13)
Örebro University (2)
show more...
Mid Sweden University (1)
show less...
Language
English (42)
Research subject (UKÄ/SCB)
Medical and Health Sciences (32)
Natural sciences (5)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view