SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Chunhui) "

Sökning: WFRF:(Zhang Chunhui)

  • Resultat 11-20 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Adam, J., et al. (författare)
  • One-dimensional pion, kaon, and proton femtoscopy in Pb-Pb collisions at root(NN)-N-S=2.76 TeV
  • 2015
  • Ingår i: Physical Review C (Nuclear Physics). - 0556-2813. ; 92:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The size of the particle emission region in high-energy collisions can be deduced using the femtoscopic correlations of particle pairs at low relative momentum. Such correlations arise due to quantum statistics and Coulomb and strong final state interactions. In this paper, results are presented from femtoscopic analyses of pi(+/-) pi(+/-), K-+/- K-+/-, K-S(0) K-S(0), pp, and (pp) over bar correlations from Pb-Pb collisions at root s(NN) = 2.76 TeV by the ALICE experiment at the LHC. One-dimensional radii of the system are extracted from correlation functions in terms of the invariant momentum difference of the pair. The comparison of the measured radii with the predictions from a hydrokinetic model is discussed. The pion and kaon source radii display a monotonic decrease with increasing average pair transverse mass m(T) which is consistent with hydrodynamic model predictions for central collisions. The kaon and proton source sizes can be reasonably described by approximate m(T) scaling.
  •  
12.
  • Liu, Tao, et al. (författare)
  • 16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend
  • 2021
  • Ingår i: Joule. - : CELL PRESS. - 2542-4351. ; 5:4, s. 914-930
  • Tidskriftsartikel (refereegranskat)abstract
    • A SUMMARY There is an urgent demand for all-polymer organic solar cells (AP-OSCs) to gain higher efficiency. Here, we successfully improve the performance to 16.09% by introducing a small amount of BN-T, a B <- N-type polymer acceptor, into the PM6:PY-IT blend. It has been found that BN-T makes the active layer, based on the PM6:PY-IT:BN-T ternary blend, more crystalline but meanwhile slightly reduces the phase separation, leading to enhancement of both exciton harvesting and charge transport. From a thermodynamic viewpoint, BN-T prefers to reside between PM6 and PY-IT, and the fraction of this fine-tunes the morphology. Besides, a significantly reduced nonradiative energy loss occurs in the ternary blend, along with the coexistence of energy and charge transfer between the two acceptors. The progressive performance facilitated by these improved properties demonstrates that AP-OSCs can possibly comparably efficient with those based on small molecule acceptors, further enhancing the competitiveness of this device type.
  •  
13.
  • Alimena, Juliette, et al. (författare)
  • Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider
  • 2020
  • Ingår i: Journal of Physics G. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 47:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments-as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER-to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity 'dark showers', highlighting opportunities for expanding the LHC reach for these signals.
  •  
14.
  • Cai, Yongqing, et al. (författare)
  • Impact of wave breaking on upper-ocean turbulence
  • 2017
  • Ingår i: Journal of Geophysical Research - Oceans. - 2169-9275 .- 2169-9291. ; 122:2, s. 1513-1528
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies have demonstrated that surface wave breaking can impact upper-ocean turbulence through wave-breaking-induced turbulence kinetic energy (TKE) flux and momentum flux. Wave-breaking-induced momentum flux decays approximately exponentially with depth, and the decay exponent depends on both the wind speed and wave age. With increasing wave age, the decay speed of wave-breaking-induced momentum flux first decreases, reaching a minimum around a wave age of 16, and then increases. In this study, a wave-breaking-induced momentum flux parameterization was proposed based on wave age and wind-speed dependence. The new proposed parameterization was introduced into a one-dimensional (1-D) ocean model along with a wave-age-dependent wave-breaking-induced TKE flux parameterization. The simulation results showed that the wave-breaking impact on the ocean mainly affected the upper-ocean layer. Adding the wave-age impact to the wave-breaking-induced TKE flux and momentum flux improved the 1-D model performance concerning the sea temperature. Moreover, the wave-breaking-induced momentum flux had a larger impact on the simulation results than the wave-breaking-induced TKE flux.
  •  
15.
  • Geng, Zhaoquan, et al. (författare)
  • Zero-Shot Recurrent Graph Neural Networks for Beam Prediction in Non-Terrestrial Networks
  • 2022
  • Ingår i: 2022 IEEE GLOBECOM Workshops, GC Wkshps 2022. - : Institute of Electrical and Electronics Engineers (IEEE). ; , s. 1400-1405
  • Konferensbidrag (refereegranskat)abstract
    • Beam management has been considered as one of the most challenging issues in mobile communications, especially in non-terrestrial networks with high-speed low-earth orbit satellites. When the user and the satellite are moving, the satellite equipped with multiple antennas needs to sweep different beam directions periodically to provide continuous service to the user. To reduce the signaling overhead in beam sweeping, we develop a recurrent graph neural network (RGNN) to predict the next beam direction that maximizes the signal strength. Compared with state-of-the-art recurrent neural networks with gated recurrent units (GRU), RGNN reduces the number of training parameters by 99.8% by exploiting a graph representation of the beams. To improve the generalization ability of RGNN in satellite communications with dynamic antenna directions, we integrate RGNN with a first-order meta-learning algorithm. After meta training, no sample is required to fine-tune the RGNN in unseen scenarios, and this approach is referred to as zero-shot meta-learning. Our simulation results show that the RGNN outperforms the GRU in terms of the convergence time and generalization ability, and the prediction accuracy with zero-shot meta-learning can be up to 97%. Even for unseen antenna directions, instead of sweeping all the neighboring beam directions, the satellite only needs to send reference signals towards few beam directions (e.g., two out of six neighboring beam directions) according to the output of the RGNN. In this way, the signaling overhead for beam sweeping can be reduced by 66%.
  •  
16.
  • Hong, Jie, et al. (författare)
  • Asymmetrically coupled co single-atom and co nanoparticle in double-shelled carbon-based nanoreactor for enhanced reversible oxygen catalysis
  • 2023
  • Ingår i: Chemical Engineering Journal. - : Elsevier. - 1385-8947 .- 1873-3212. ; 455
  • Tidskriftsartikel (refereegranskat)abstract
    • Simultaneous construction of size-asymmetric metal single atoms and nanoparticle active sites in advanced and robust carrier materials is particularly important yet challenging for efficient reversible oxygen catalysis. Herein, a facile “chemical etching/in-Situ capture” synthesis strategy was developed to fabricate a unique double-shelled carbon-based nanobox integrated with size-asymmetric Co single-atom (CoSA) and metallic Co nanoparticle (CoNP) moiety. As expected, this well-managed catalyst product yielded remarkable bifunctional electrocatalytic performances in alkaline electrolytes, with a decent half-wave potential of 0.886 V for oxygen reduction reaction (ORR) and a small overpotential of 341 mV at 10 mA/cm2 for oxygen evolution reaction (OER). Besides, this nanobox catalyst served as a cost-effective and efficient oxygen electrode in the assembled rechargeable ZABs, exceeding the mixed electrocatalyst of expensive Pt/C-RuO2, in terms of the elevated peak power density of 239 mW/cm2, the promoted specific capacity of 770 mAh/gZn, as well as the appreciable charge–discharge cycle stability. Theoretical calculations revealed that the strong interaction between the delicate CoSA site and CoNP phase, could effectively optimize the adsorption and desorption energy barriers of reaction intermediates on the designed catalyst surface, thus achieving synergistic enhancement of electrocatalytic activity towards ORR and OER. This finding affords a feasible and effective strategy to achieve highly active and durable bifunctional catalysts for both fundamental research and practical rechargeable ZABs applications.
  •  
17.
  • Li, Ziyao, et al. (författare)
  • Atomic-level orbital coupling in a tri-metal alloy site enables highly efficient reversible oxygen electrocatalysis
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 11:5, s. 2155-2167
  • Tidskriftsartikel (refereegranskat)abstract
    • Complex multi-metallic alloys with ultra-small sizes have received extensive attention in the fields of Zn-air battery and water splitting, because of their unique advantages including adjustable composition, tailorable active sites, and optimizable electronic structure. In this effort, an atomic-level orbital coupling strategy is presented to effectively regulate the electronic structures of ultra-small tri-metal Fe-Co-Ni nanoalloy particles confined in an N-doped carbon hollow nanobox. As expected, the optimal nanoalloy hybrid material exhibited notable bi-functional catalytic performances toward the oxygen reduction reaction (half-wave potential of 0.902 V) and oxygen evolution reaction (1.589 V at 10 mA cm−2) with a small ΔE of 0.687 V, exceeding the precious-metal-based and many previously reported catalysts. Furthermore, the as-assembled Zn-air device also displayed a superior specific capacity of 894 mA h g−1, a maximal power density of 247 mW cm−2, and impressive durability (over 100 hours). Ultraviolet photoelectron spectroscopy and density functional theory calculations revealed that the electronic structures could be finely tuned and optimized through ternary metal alloying, resulting in a suitable d-band center and advantageous interfacial charge-transfer, which in turn could effectively reduce the involved energy barriers in the electrocatalytic process and significantly boost its intrinsic activity of reversible oxygen catalysis. Thus, this work affords an effective method for the rational creation of bi-functional non-noble-metal-based electrocatalysts for sustainable energy technology.
  •  
18.
  • Nie, Zhicheng, et al. (författare)
  • Tailoring the d-band center by intermetallic charge-transfer manipulation in bimetal alloy nanoparticle confined in N-doped carbon nanobox for efficient rechargeable Zn-air battery
  • 2023
  • Ingår i: Chemical Engineering Journal. - : Elsevier. - 1385-8947 .- 1873-3212. ; 463
  • Tidskriftsartikel (refereegranskat)abstract
    • In this effort, the electronic-structure modulation strategy through nano-alloying was rationally designed to fabricate Fe-Ni alloy particles embedded in an N-doped carbon nanobox. The as-developed catalyst outperformed the commercialized noble-metal benchmarks with a decent half-wave potential of 0.891 V for ORR and a small overpotential of 325 mV at 10 mA/cm2 for OER both in 0.1 M KOH solution. Beyond that, a highly-efficient regenerative Zn-air battery was also successfully constructed, evidenced by a small potential gap of 0.664 V (between Ej=10 and E1/2), a high specific capacity of 763 mAh/g, a large peak power density of 270 mW/cm2, and robust stability. Ultraviolet photoelectron spectroscopy and theoretical simulation confirmed that the alloying of Ni into Fe could well manipulate the electronic structure, leading to favorable intermetallic charge-transfer and then downshifting the d-band center of Fe adsorption sites, all of which help to significantly lower the reaction barriers of the involved intermediates during the electrocatalytic ORR/OER processes.
  •  
19.
  • Nie, Zhicheng, et al. (författare)
  • Vacancy and doping engineering of Ni-based charge-buffer electrode for highly-efficient membrane-free and decoupled hydrogen/oxygen evolution
  • 2023
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier. - 0021-9797 .- 1095-7103. ; 642, s. 714-723
  • Tidskriftsartikel (refereegranskat)abstract
    • The realization of the membrane-free two-step water electrolysis is particularly important yet challenging for the low-cost and large-scale supply of hydrogen energy. In this effort, Co-doped Ni(OH)2 nanosheets were successfully anchored onto the nickel foam (NF) substrate through the in-situ growth of metal-organic frame material and the subsequent alkali-etching technique. Using the well-regulated Co-doping Ni(OH)2@NF electrodes as a charge mediator, electrochemical hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) were decoupled on time scales, thus affording a membrane-free two-step route for H2 and O2 productions. In this architecture, the first HER process on the cathode could be maintained for 1300 s at a current of 100 mA, while the corresponding Ni(OH)2 charge mediator was simultaneously oxidized to NiOOH, with a decent cell voltage of 1.542 V. The subsequent OER process involved a reduction/regeneration of Ni(OH)2 (from NiOOH to Ni(OH)2) and an anodic O2-production, with an operating voltage of 0.291 V. Moreover, the Ni-Zn battery assembled through the combination of NiOOH and Zn sheet could replace the second step of OER to achieve the coupling of continuous H2-production and battery discharge, thus also providing a new way for hydrogen production without an external power supply. Experiment and theoretical calculations have shown that the cobalt-doping not only improved the conductivity of the charge-buffer electrode, but also shifted its redox potential cathodically and boosted the adsorption affinity of the buffer medium to OH– ions, both contributing to promoted HER and OER activity. Therefore, this decoupled water electrolysis device affords a promising pathway to support the efficient conversion of renewables to hydrogen.
  •  
20.
  • Peng, Xin, et al. (författare)
  • Optimal site selection for the remote-monitoring sulfur content of ship fuels in ports
  • 2022
  • Ingår i: Ocean and Coastal Management. - : Elsevier. - 0964-5691 .- 1873-524X. ; 225
  • Tidskriftsartikel (refereegranskat)abstract
    • The remote monitoring method based on air-quality monitoring sensors is a common way to monitor the FSC (fuel sulfur content) of oils for ships. Considering the influences of geographical environments, atmospheric conditions, regional ship traffic flow, emission characteristics of ships, and height of monitoring sensors on the monitor station chosen, a new method was proposed to optimize the site selection for monitoring the FSC of fuel oils used by ships in waters of the port. SO2 numeric simulation and observation from sensors were integrated to estimate the FSCs. The proposed method was utilized to recommend the sites of the fixed sniffing monitoring stations in Yantian port, Shenzhen, China from June and July 2018. The results showed that the experimental stations could monitor FSCs, and the relative difference between the estimated and actual FSCs of ships was 16.34%. The proposed method for recommending sites of FSC monitoring sensors contributed to intelligently supervising air pollutants emitted from ships and fuel oils of ships in the emission control areas of China.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy