SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(((WFRF:(Sutherland M.))) srt2:(2010-2014)) srt2:(2011)"

Search: (((WFRF:(Sutherland M.))) srt2:(2010-2014)) > (2011)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Sundh, M., et al. (author)
  • Supported Lipid Bilayers With Controlled Curvature via Colloidal Lithography
  • 2011
  • In: IEEE Transactions on Nanobioscience. - 1536-1241. ; 10:3, s. 187-193
  • Journal article (peer-reviewed)abstract
    • Supported lipid bilayers (SLBs) at surfaces provide a route to quantitatively study molecular interactions with and at lipid membranes via different surface-based analytical techniques. Here, a method to fabricate SLBs with controlled curvatures, in the nanometer regime over large areas, is presented, utilizing lipid vesicle rupture onto nanostructured sensor substrates. Heat treated colloidal particle masks were used as templates to produce silicon dioxide films with systematically varied radius of curvature (ROC, 70 to 170 nm are demonstrated) and quartz crystal microbalance with dissipation monitoring (QCM-D) was used to confirm vesicle rupture onto such structured surfaces. Fluorescence microscopy was used to show fluidity of the supported membranes. The formation of confluent SLBs is demonstrated at the nanostructured surfaces from vesicles composed of POPC lipids. However, at surfaces with decreasing ROCs, vesicle rupture was hindered but with an increasing fraction of the positively charged lipid POEPC in the vesicles, it was possible to form good quality supported bilayers on all curvatures studied. Curved SLBs open up the possibility to systematically study the influence of curvature on molecular interactions at lipid membranes.
  •  
2.
  •  
3.
  •  
4.
  • Sundh, M., et al. (author)
  • Formation of Supported Lipid Bilayers at Surfaces with Controlled Curvatures: Influence of Lipid Charge
  • 2011
  • In: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-5207 .- 1520-6106. ; 115:24, s. 7838-7848
  • Journal article (peer-reviewed)abstract
    • We have developed and characterized novel biomimetic membranes, formed at nanostructured sensor substrates with controlled curvatures, motivated by the many biological processes that involve membrane curvature. Model systems with convex nanostructures, with radii of curvatures (ROCs) of 70, 75, and 95 nm, were fabricated utilizing colloidal assembly and used as substrates for supported lipid bilayers (SLBs). The SLBs were formed via vesicle adsorption and rupture, and the vesicle deposition pathway was studied by means of quartz crystal microbalance with dissipation (QCM-D) and fluorescence microscopy. SLBs conforming to the underlying nanostructured surfaces, which exhibit increased surface area with decreased ROC, were confirmed from excess mass, monitored by QCM-D, and excess total fluorescence intensities. The formation of SLBs at the nanostructured surfaces was possible, however, depending on the ROC of the structures and the lipid vesicle charge the quality varied. The presence of nanostructures was shown to impair vesicle rupture and SLB formation was progressively hindered at surfaces with structures of decreasing ROCs. The introduction of a fraction of the positively charged lipid POEPC in the lipid vesicle membrane allowed for good quality and conformal bilayers at all surfaces. Alternatively, for vesicles formed from lipid mixtures with a fraction of the negatively charged lipid POPS, SLB formation was not at all possible at surfaces with the lowest ROC. Interestingly, the vesicle adsorption rate and the SLB formation were faster at surfaces with nanostructures of progressively smaller ROCs at high ratios of POPS in the vesicles. Development of templated SLBs with controlled curvatures provides a new experimental platform, especially at the nanoscale, at which membrane events such as lipid sorting, phase separation, and protein binding can be studied.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view