SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(L773:1553 7404 OR L773:1553 7390) srt2:(2020-2024) srt2:(2023)"

Search: (L773:1553 7404 OR L773:1553 7390) srt2:(2020-2024) > (2023)

  • Result 1-10 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bi, Huijuan, et al. (author)
  • A frame-shift mutation in COMTD1 is associated with impaired pheomelanin pigmentation in chicken
  • 2023
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 19:4
  • Journal article (peer-reviewed)abstract
    • The biochemical pathway regulating the synthesis of yellow/red pheomelanin is less well characterized than the synthesis of black/brown eumelanin. Inhibitor of gold (IG phenotype) is a plumage colour variant in chicken that provides an opportunity to further explore this pathway since the recessive allele (IG) at this locus is associated with a defect in the production of pheomelanin. IG/IG homozygotes display a marked dilution of red pheomelanin pigmentation, whilst black pigmentation (eumelanin) is only slightly affected. Here we show that a 2-base pair insertion (frame-shift mutation) in the 5th exon of the Catechol-O-methyltransferase containing domain 1 gene (COMTD1), expected to cause a complete or partial loss-of-function of the COMTD1 enzyme, shows complete concordance with the IG phenotype within and across breeds. We show that the COMTD1 protein is localized to mitochondria in pigment cells. Knockout of Comtd1 in a mouse melanocytic cell line results in a reduction in pheomelanin metabolites and significant alterations in metabolites of glutamate/glutathione, riboflavin, and the tricarboxylic acid cycle. Furthermore, COMTD1 overexpression enhanced cellular proliferation following chemical-induced transfection, a potential inducer of oxidative stress. These observations suggest that COMTD1 plays a protective role for melanocytes against oxidative stress and that this supports their ability to produce pheomelanin.
  •  
2.
  • Chevy, Elizabeth T., et al. (author)
  • Integrating sex-bias into studies of archaic introgression on chromosome X
  • 2023
  • In: PLOS Genetics. - 1553-7390 .- 1553-7404. ; 19:8
  • Journal article (peer-reviewed)abstract
    • Evidence of interbreeding between archaic hominins and humans comes from methods thatinfer the locations of segments of archaic haplotypes, or ‘archaic coverage’ using thegenomes of people living today. As more estimates of archaic coverage have emerged, ithas become clear that most of this coverage is found on the autosomes— very little isretained on chromosome X. Here, we summarize published estimates of archaic coverageon autosomes and chromosome X from extant human samples. We find on average 7 timesmore archaic coverage on autosomes than chromosome X, and identify broad continentalpatterns in this ratio: greatest in European samples, and least in South Asian samples. Wealso perform extensive simulation studies to investigate how the amount of archaic cover-age, lengths of coverage, and rates of purging of archaic coverage are affected by sex-biascaused by an unequal sex ratio within the archaic introgressors. Our results generally con-firm that, with increasing male sex-bias, less archaic coverage is retained on chromosomeX. Ours is the first study to explicitly model such sex-bias and its potential role in creating thedearth of archaic coverage on chromosome X.
  •  
3.
  • Gifford, Danna R., et al. (author)
  • Mutators can drive the evolution of multi-resistance to antibiotics
  • 2023
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 19:6
  • Journal article (peer-reviewed)abstract
    • Antibiotic combination therapies are an approach used to counter the evolution of resistance; their purported benefit is they can stop the successive emergence of independent resistance mutations in the same genome. Here, we show that bacterial populations with ‘mutators’, organisms with defects in DNA repair, readily evolve resistance to combination antibiotic treatment when there is a delay in reaching inhibitory concentrations of antibiotic—under conditions where purely wild-type populations cannot. In populations of Escherichia coli subjected to combination treatment, we detected a diverse array of acquired mutations, including multiple alleles in the canonical targets of resistance for the two drugs, as well as mutations in multi-drug efflux pumps and genes involved in DNA replication and repair. Unexpectedly, mutators not only allowed multi-resistance to evolve under combination treatment where it was favoured, but also under single-drug treatments. Using simulations, we show that the increase in mutation rate of the two canonical resistance targets is sufficient to permit multi-resistance evolution in both single-drug and combination treatments. Under both conditions, the mutator allele swept to fixation through hitch-hiking with single-drug resistance, enabling subsequent resistance mutations to emerge. Ultimately, our results suggest that mutators may hinder the utility of combination therapy when mutators are present. Additionally, by raising the rates of genetic mutation, selection for multi-resistance may have the unwanted side-effect of increasing the potential to evolve resistance to future antibiotic treatments.
  •  
4.
  • Hallgren, Joel, 1996-, et al. (author)
  • Phosphate starvation decouples cell differentiation from DNA replication control in the dimorphic bacterium Caulobacter crescentus
  • 2023
  • In: PLOS Genetics. - 1553-7390 .- 1553-7404. ; 19:11
  • Journal article (peer-reviewed)abstract
    • Upon nutrient depletion, bacteria stop proliferating and undergo physiological and morphological changes to ensure their survival. Yet, how these processes are coordinated in response to distinct starvation conditions is poorly understood. Here we compare the cellular responses of Caulobacter crescentus to carbon (C), nitrogen (N) and phosphorus (P) starvation conditions. We find that DNA replication initiation and abundance of the replication initiator DnaA are, under all three starvation conditions, regulated by a common mechanism involving the inhibition of DnaA translation. By contrast, cell differentiation from a motile swarmer cell to a sessile stalked cell is regulated differently under the three starvation conditions. During C and N starvation, production of the signaling molecules (p)ppGpp is required to arrest cell development in the motile swarmer stage. By contrast, our data suggest that low (p)ppGpp levels under P starvation allow P-starved swarmer cells to differentiate into sessile stalked cells. Further, we show that limited DnaA availability, and consequently absence of DNA replication initiation, is the main reason that prevents P-starved stalked cells from completing the cell cycle. Together, our findings demonstrate that C. crescentus decouples cell differentiation from DNA replication initiation under certain starvation conditions, two otherwise intimately coupled processes. We hypothesize that arresting the developmental program either as motile swarmer cells or as sessile stalked cells improves the chances of survival of C. crescentus during the different starvation conditions.
  •  
5.
  • Kreiner, Julia M., et al. (author)
  • Quantifying the role of genome size and repeat content in adaptive variation and the architecture of flowering time in Amaranthus tuberculatus
  • 2023
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 19:12
  • Journal article (peer-reviewed)abstract
    • Genome size variation, largely driven by repeat content, is poorly understood within and among populations, limiting our understanding of its significance for adaptation. Here we characterize intraspecific variation in genome size and repeat content across 186 individuals of Amaranthus tuberculatus, a ubiquitous native weed that shows flowering time adaptation to climate across its range and in response to agriculture. Sequence-based genome size estimates vary by up to 20% across individuals, consistent with the considerable variability in the abundance of transposable elements, unknown repeats, and rDNAs across individuals. The additive effect of this variation has important phenotypic consequences—individuals with more repeats, and thus larger genomes, show slower flowering times and growth rates. However, compared to newly-characterized gene copy number and polygenic nucleotide changes underlying variation in flowering time, we show that genome size is a marginal contributor. Differences in flowering time are reflected by genome size variation across sexes and marginally, habitats, while polygenic variation and a gene copy number variant within the ATP synthesis pathway show consistently stronger environmental clines than genome size. Repeat content nonetheless shows non-neutral distributions across the genome, and across latitudinal and environmental gradients, demonstrating the numerous governing processes that in turn influence quantitative genetic variation for phenotypes key to plant adaptation.
  •  
6.
  • Lingaas, Frode, et al. (author)
  • Bayesian mixed model analysis uncovered 21 risk loci for chronic kidney disease in boxer dogs
  • 2023
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 19:1
  • Journal article (peer-reviewed)abstract
    • Author summaryChronic kidney disease (CKD) is described as a set of heterogeneous disorders affecting kidney structure and function. CKD is common in dogs and has been diagnosed in nearly all breeds. In this study, we identified 21 genetic regions associated with CKD in a boxer population and investigated the relevant genes and putative regulatory variants in these regions. Studies of canine CKD may help to better understand the pathology of kidney disease in both dogs and humans, and shows an important potential for early identification of high-risk individuals. Chronic kidney disease (CKD) affects 10% of the human population, with only a small fraction genetically defined. CKD is also common in dogs and has been diagnosed in nearly all breeds, but its genetic basis remains unclear. Here, we performed a Bayesian mixed model genome-wide association analysis for canine CKD in a boxer population of 117 canine cases and 137 controls, and identified 21 genetic regions associated with the disease. At the top markers from each CKD region, the cases carried an average of 20.2 risk alleles, significantly higher than controls (15.6 risk alleles). An ANOVA test showed that the 21 CKD regions together explained 57% of CKD phenotypic variation in the population. Based on whole genome sequencing data of 20 boxers, we identified 5,206 variants in LD with the top 50 BayesR markers. Following comparative analysis with human regulatory data, 17 putative regulatory variants were identified and tested with electrophoretic mobility shift assays. In total four variants, three intronic variants from the MAGI2 and GALNT18 genes, and one variant in an intergenic region on chr28, showed alternative binding ability for the risk and protective alleles in kidney cell lines. Many genes from the 21 CKD regions, RELN, MAGI2, FGFR2 and others, have been implicated in human kidney development or disease. The results from this study provide new information that may enlighten the etiology of CKD in both dogs and humans.
  •  
7.
  • Morez, Adeline, et al. (author)
  • Imputed genomes and haplotype-based analyses of the Picts of early medieval Scotland reveal fine-scale relatedness between Iron Age, early medieval and the modern people of the UK
  • 2023
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 19:4
  • Journal article (peer-reviewed)abstract
    • There are longstanding questions about the origins and ancestry of the Picts of early medieval Scotland (ca. 300–900 CE), prompted in part by exotic medieval origin myths, their enigmatic symbols and inscriptions, and the meagre textual evidence. The Picts, first mentioned in the late 3rd century CE resisted the Romans and went on to form a powerful kingdom that ruled over a large territory in northern Britain. In the 9th and 10th centuries Gaelic language, culture and identity became dominant, transforming the Pictish realm into Alba, the precursor to the medieval kingdom of Scotland. To date, no comprehensive analysis of Pictish genomes has been published, and questions about their biological relationships to other cultural groups living in Britain remain unanswered. Here we present two high-quality Pictish genomes (2.4 and 16.5X coverage) from central and northern Scotland dated from the 5th-7th century which we impute and co-analyse with >8,300 previously published ancient and modern genomes. Using allele frequency and haplotype-based approaches, we can firmly place the genomes within the Iron Age gene pool in Britain and demonstrate regional biological affinity. We also demonstrate the presence of population structure within Pictish groups, with Orcadian Picts being genetically distinct from their mainland contemporaries. When investigating Identity-By-Descent (IBD) with present-day genomes, we observe broad affinities between the mainland Pictish genomes and the present-day people living in western Scotland, Wales, Northern Ireland and Northumbria, but less with the rest of England, the Orkney islands and eastern Scotland—where the political centres of Pictland were located. The pre-Viking Age Orcadian Picts evidence a high degree of IBD sharing across modern Scotland, Wales, Northern Ireland, and the Orkney islands, demonstrating substantial genetic continuity in Orkney for the last ~2,000 years. Analysis of mitochondrial DNA diversity at the Pictish cemetery of Lundin Links (n = 7) reveals absence of direct common female ancestors, with implications for broader social organisation. Overall, our study provides novel insights into the genetic affinities and population structure of the Picts and direct relationships between ancient and present-day groups of the UK.
  •  
8.
  • Näsvall, Karin, et al. (author)
  • Nascent evolution of recombination rate differences as a consequence of chromosomal rearrangements
  • 2023
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 19:8
  • Journal article (peer-reviewed)abstract
    • Reshuffling of genetic variation occurs both by independent assortment of chromosomes and by homologous recombination. Such reshuffling can generate novel allele combinations and break linkage between advantageous and deleterious variants which increases both the potential and the efficacy of natural selection. Here we used high-density linkage maps to characterize global and regional recombination rate variation in two populations of the wood white butterfly (Leptidea sinapis) that differ considerably in their karyotype as a consequence of at least 27 chromosome fissions and fusions. The recombination data were compared to estimates of genetic diversity and measures of selection to assess the relationship between chromosomal rearrangements, crossing over, maintenance of genetic diversity and adaptation. Our data show that the recombination rate is influenced by both chromosome size and number, but that the difference in the number of crossovers between karyotypes is reduced as a consequence of a higher frequency of double crossovers in larger chromosomes. As expected from effects of selection on linked sites, we observed an overall positive association between recombination rate and genetic diversity in both populations. Our results also revealed a significant effect of chromosomal rearrangements on the rate of intergenic diversity change between populations, but limited effects on polymorphisms in coding sequence. We conclude that chromosomal rearrangements can have considerable effects on the recombination landscape and consequently influence both maintenance of genetic diversity and efficiency of selection in natural populations.
  •  
9.
  • Yazdi, Homa Papoli, et al. (author)
  • The evolutionary maintenance of ancient recombining sex chromosomes in the ostrich
  • 2023
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 19:6
  • Journal article (peer-reviewed)abstract
    • Sex chromosomes have evolved repeatedly across the tree of life and often exhibit extreme size dimorphism due to genetic degeneration of the sex-limited chromosome (e.g. the W chromosome of some birds and Y chromosome of mammals). However, in some lineages, ancient sex-limited chromosomes have escaped degeneration. Here, we study the evolutionary maintenance of sex chromosomes in the ostrich (Struthio camelus), where the W remains 65% the size of the Z chromosome, despite being more than 100 million years old. Using genome-wide resequencing data, we show that the population scaled recombination rate of the pseudoautosomal region (PAR) is higher than similar sized autosomes and is correlated with pedigree-based recombination rate in the heterogametic females, but not homogametic males. Genetic variation within the sex-linked region (SLR) (& pi; = 0.001) was significantly lower than in the PAR, consistent with recombination cessation. Conversely, genetic variation across the PAR (& pi; = 0.0016) was similar to that of autosomes and dependent on local recombination rates, GC content and to a lesser extent, gene density. In particular, the region close to the SLR was as genetically diverse as autosomes, likely due to high recombination rates around the PAR boundary restricting genetic linkage with the SLR to only similar to 50Kb. The potential for alleles with antagonistic fitness effects in males and females to drive chromosome degeneration is therefore limited. While some regions of the PAR had divergent male-female allele frequencies, suggestive of sexually antagonistic alleles, coalescent simulations showed this was broadly consistent with neutral genetic processes. Our results indicate that the degeneration of the large and ancient sex chromosomes of the ostrich may have been slowed by high recombination in the female PAR, reducing the scope for the accumulation of sexually antagonistic variation to generate selection for recombination cessation.
  •  
10.
  • Ashley-Koch, AE, et al. (author)
  • Genome-wide association study identifies four pan-ancestry loci for suicidal ideation in the Million Veteran Program
  • 2023
  • In: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 19:3, s. e1010623-
  • Journal article (peer-reviewed)abstract
    • Suicidal ideation (SI) often precedes and predicts suicide attempt and death, is the most common suicidal phenotype and is over-represented in veterans. The genetic architecture of SI in the absence of suicide attempt (SA) is unknown, yet believed to have distinct and overlapping risk with other suicidal behaviors. We performed the first GWAS of SI without SA in the Million Veteran Program (MVP), identifying 99,814 SI cases from electronic health records without a history of SA or suicide death (SD) and 512,567 controls without SI, SA or SD. GWAS was performed separately in the four largest ancestry groups, controlling for sex, age and genetic substructure. Ancestry-specific results were combined via meta-analysis to identify pan-ancestry loci. Four genome-wide significant (GWS) loci were identified in the pan-ancestry meta-analysis with loci on chromosomes 6 and 9 associated with suicide attempt in an independent sample. Pan-ancestry gene-based analysis identified GWS associations with DRD2, DCC, FBXL19, BCL7C, CTF1, ANNK1, and EXD3. Gene-set analysis implicated synaptic and startle response pathways (q’s<0.05). European ancestry (EA) analysis identified GWS loci on chromosomes 6 and 9, as well as GWS gene associations in EXD3, DRD2, and DCC. No other ancestry-specific GWS results were identified, underscoring the need to increase representation of diverse individuals. The genetic correlation of SI and SA within MVP was high (rG = 0.87; p = 1.09e-50), as well as with post-traumatic stress disorder (PTSD; rG = 0.78; p = 1.98e-95) and major depressive disorder (MDD; rG = 0.78; p = 8.33e-83). Conditional analysis on PTSD and MDD attenuated most pan-ancestry and EA GWS signals for SI without SA to nominal significance, with the exception of EXD3 which remained GWS. Our novel findings support a polygenic and complex architecture for SI without SA which is largely shared with SA and overlaps with psychiatric conditions frequently comorbid with suicidal behaviors.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view