SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Amiri F)) srt2:(2015-2019)"

Search: (WFRF:(Amiri F)) > (2015-2019)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • Ahmadi, M, et al. (author)
  • Immunization with HER2 extracellular subdomain proteins induces cellular response and tumor growth inhibition in mice
  • 2018
  • In: Immunotherapy. - : Future Medicine Ltd. - 1750-7448 .- 1750-743X. ; 10:6, s. 511-524
  • Journal article (peer-reviewed)abstract
    • Aim: We investigated cellular and protective immune responses in mice vaccinated with recombinant HER2 extracellular subdomains. Materials & methods: Balb/C mice were immunized with recombinant full HER2 extracellular domain and subdomain proteins. Humoral and cellular immune response and antitumor effect was evaluated using a syngeneic mice tumor model. Results: All recombinant proteins induced secretion of IL-4 and particularly IFN-γ and IL-17 cytokines. Challenging of immunized mice with stable 4T1-HER2 transfected cells resulted in partial but significant tumor growth inhibition in all groups of mice particularly those immunized with fHER2-ECD together with CPG. Conclusion: Our results suggest that the recombinant HER2-ECD subdomains induce mainly Th1 and Th17 responses, which seem to contribute to tumor growth inhibition in syngeneic mice.
  •  
5.
  •  
6.
  • Bergman, A. S., et al. (author)
  • 280 GHz Focal Plane Unit Design and Characterization for the SPIDER-2 Suborbital Polarimeter
  • 2018
  • In: Journal of Low Temperature Physics. - : Springer Science and Business Media LLC. - 0022-2291 .- 1573-7357. ; 193:5-6, s. 1075-1084
  • Journal article (peer-reviewed)abstract
    • We describe the construction and characterization of the 280 GHz bolometric focal plane units (FPUs) to be deployed on the second flight of the balloon-borne SPIDER instrument. These FPUs are vital to SPIDER's primary science goal of detecting or placing an upper limit on the amplitude of the primordial gravitational wave signature in the cosmic microwave background (CMB) by constraining the B-mode contamination in the CMB from Galactic dust emission. Each 280 GHz focal plane contains a 16 x 16 grid of corrugated silicon feedhorns coupled to an array of aluminum-manganese transition-edge sensor (TES) bolometers fabricated on 150 mm diameter substrates. In total, the three 280 GHz FPUs contain 1530 polarization-sensitive bolometers (765 spatial pixels) optimized for the low loading environment in flight and read out by time-division SQUID multiplexing. In this paper, we describe the mechanical, thermal, and magnetic shielding architecture of the focal planes and present cryogenic measurements which characterize yield and the uniformity of several bolometer parameters. The assembled FPUs have high yields, with one array as high as 95% including defects from wiring and readout. We demonstrate high uniformity in device parameters, finding the median saturation power for each TES array to be similar to 3 pW at 300 mK with a less than 6% variation across each array at 1 sigma. These focal planes will be deployed alongside the 95 and 150 GHz telescopes in the SPIDER-2 instrument, slated to fly from McMurdo Station in Antarctica in December 2018.
  •  
7.
  • Gualtieri, R., et al. (author)
  • SPIDER : CMB Polarimetry from the Edge of Space
  • 2018
  • In: Journal of Low Temperature Physics. - : Springer Science and Business Media LLC. - 0022-2291 .- 1573-7357. ; 193:5-6, s. 1112-1121
  • Journal article (peer-reviewed)abstract
    • SPIDER is a balloon-borne instrument designed to map the polarization of the millimeter-wave sky at large angular scales. Spider targets the B-mode signature of primordial gravitational waves in the cosmic microwave background (CMB), with a focus on mapping a large sky area with high fidelity at multiple frequencies. SPIDER's first long-duration balloon (LDB) flight in January 2015 deployed a total of 2400 antenna-coupled transition-edge sensors (TESs) at 90 GHz and 150 GHz. In this work we review the design and in-flight performance of the SPIDER instrument, with a particular focus on the measured performance of the detectors and instrument in a space-like loading and radiation environment. SPIDER's second flight in December 2018 will incorporate payload upgrades and new receivers to map the sky at 285 GHz, providing valuable information for cleaning polarized dust emission from CMB maps.
  •  
8.
  • Nagy, J. M., et al. (author)
  • A New Limit on CMB Circular Polarization from SPIDER
  • 2017
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 844:2
  • Journal article (peer-reviewed)abstract
    • We present a new upper limit on cosmic microwave background (CMB) circular polarization from the 2015 flight of SPIDER, a balloon-borne telescope designed to search for B-mode linear polarization from cosmic inflation. Although the level of circular polarization in the CMB is predicted to be very small, experimental limits provide a valuable test of the underlying models. By exploiting the nonzero circular-to-linear polarization coupling of the half-wave plate polarization modulators, data from SPIDER's 2015 Antarctic flight provide a constraint on Stokes V at 95 and 150 GHz in the range 33 < l < 307. No other limits exist over this full range of angular scales, and SPIDER improves on the previous limit by several orders of magnitude, providing 95% C.L. constraints on l (l + 1)C-l(VV) /(2 pi) ranging from 141 to 255 mu K-2 at 150 GHz for a thermal CMB spectrum. As linear CMB polarization experiments become increasingly sensitive, the techniques described in this paper can be applied to obtain even stronger constraints on circular polarization.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view