SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Benson Mikael 1954 )) srt2:(2015-2019) srt2:(2019)"

Search: (WFRF:(Benson Mikael 1954 )) srt2:(2015-2019) > (2019)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lentini, Antonio, 1990- (author)
  • Dynamic regulation of DNA methylation in human T-cell biology
  • 2019
  • Doctoral thesis (other academic/artistic)abstract
    • T helper cells play a central role in orchestrating immune responses in humans. Upon encountering a foreign antigen, T helper cells are activated followed by a differentiation process where the cells are specialised to help combating the infection. Dysregulation of T helper cell activation, differentiation and function has been implicated in numerous diseases, including autoimmunity and cancer. Whereas gene-regulatory networks help drive T-cell differentiation, acquisition of stable cell states require heritable epigenetic signals, such as DNA methylation. Indeed, the establishment of DNA methylation patterns is a key part of appropriate T-cell differentiation but how this is regulated over time remains unknown. Methylation can be directly attached to cytosine residues in DNA to form 5-methylcytosine (5mC) but the removal of DNA methylation requires multiple enzymatic reactions, commonly initiated by the conversion into 5-hydroxymethylcytosine (5hmC), thus creating a highly complex regulatory system. This thesis aimed to investigate how DNA methylation is dynamically regulated during T-cell differentiation.To this end, we employed large-scale profiling techniques combining gene expression as well as genome-wide 5mC and 5hmC measurements to construct a time-series model of epigenetic regulation of differentiation. This revealed that early T-cell activation was accompanied by extensive genome-wide deposition of 5hmC which resulted in demethylation upon proliferation. Early DNA methylation remodelling through 5hmC was not only indicative of demethylation events during T-cell differentiation but also marked changes persisting longterm in memory T-cell subsets. These results suggest that priming of epigenetic landscapes in T-cells is initiated during early activation events, preceding any establishment of a stable lineage, which are then maintained throughout the cells lifespan. The regions undergoing remodelling were also highly enriched for genetic variants in autoimmune diseases which we show to be functional through disruption of protein binding. These variants could potentially disrupt gene-regulatory networks and the establishment of epigenetic priming, highlighting the complex interplay between genetic and epigenetic layers. In the course of this work, we discovered that a commonly used technique to study genome-wide DNA modifications, DNA immunoprecipitation (DIP)-seq, had a false discovery rate between 50-99% depending on the modification and cell type being assayed. This represented inherent technical errors related to the use of antibodies resulting in off-target binding of repetitive sequences lacking any DNA modifications. These sequences are common in mammalian genomes making robust detection of rare DNA modifications very difficult due to the high background signals. However, offtarget binding could easily be controlled for using a non-specific antibody control which greatly improved data quality and biological insight of the data. Although future studies are advised to use alternative methods where available, error correction is an acceptable alternative which will help fuel new discoveries through the removal of extensive background signals.Taken together, this thesis shows how integrative use of high-resolution epigenomic data can be used to study complex biological systems over time as well as how these techniques can be systematically characterised to identify and correct errors resulting in improved detection.
  •  
2.
  • Menditto, Enrica, et al. (author)
  • Adherence to treatment in allergic rhinitis using mobile technology : The MASK Study
  • 2019
  • In: Clinical and Experimental Allergy. - : WILEY. - 0954-7894 .- 1365-2222. ; 49:4, s. 442-460
  • Journal article (peer-reviewed)abstract
    • Background: Mobile technology may help to better understand the adherence to treatment. MASK-rhinitis (Mobile Airways Sentinel NetworK for allergic rhinitis) is a patient-centred ICT system. A mobile phone app (the Allergy Diary) central to MASK is available in 22 countries. Objectives: To assess the adherence to treatment in allergic rhinitis patients using the Allergy Diary App. Methods: An observational cross-sectional study was carried out on all users who filled in the Allergy Diary from 1 January 2016 to 1 August 2017. Secondary adherence was assessed by using the modified Medication Possession Ratio (MPR) and the Proportion of days covered (PDC) approach. Results: A total of 12143 users were registered. A total of 6949 users reported at least one VAS data recording. Among them, 1887 users reported >= 7 VAS data. About 1195 subjects were included in the analysis of adherence. One hundred and thirty-six (11.28%) users were adherent (MPR >= 70% and PDC <= 1.25), 51 (4.23%) were partly adherent (MPR >= 70% and PDC = 1.50) and 176 (14.60%) were switchers. On the other hand, 832 (69.05%) users were non-adherent to medications (MPR <70%). Of those, the largest group was non-adherent to medications and the time interval was increased in 442 (36.68%) users. Conclusion and clinical relevance: Adherence to treatment is low. The relative efficacy of continuous vs on-demand treatment for allergic rhinitis symptoms is still a matter of debate. This study shows an approach for measuring retrospective adherence based on a mobile app. This also represents a novel approach for analysing medication-taking behaviour in a real-world setting.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view