SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Cecconello I)) srt2:(2020-2023)"

Search: (WFRF:(Cecconello I)) > (2020-2023)

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Glasbey, JC, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
7.
  • Biel, W., et al. (author)
  • Development of a concept and basis for the DEMO diagnostic and control system
  • 2022
  • In: Fusion engineering and design. - : Elsevier. - 0920-3796 .- 1873-7196. ; 179
  • Journal article (peer-reviewed)abstract
    • An initial concept for the plasma diagnostic and control (D&C) system has been developed as part of European studies towards the development of a demonstration tokamak fusion reactor (DEMO). The main objective is to develop a feasible, integrated concept design of the DEMO D&C system that can provide reliable plasma control and high performance (electricity output) over extended periods of operation. While the fusion power is maximized when operating near to the operational limits of the tokamak, the reliability of operation typically improves when choosing parameters significantly distant from these limits. In addition to these conflicting requirements, the D&C development has to cope with strong adverse effects acting on all in vessel components on DEMO (harsh neutron environment, particle fluxes, temperatures, electromagnetic forces, etc.). Moreover, space allocation and plasma access are constrained by the needs for first wall integrity and optimization of tritium breeding. Taking into account these boundary conditions, the main DEMO plasma control issues have been formulated, and a list of diagnostic systems and channels needed for plasma control has been developed, which were selected for their robustness and the required coverage of control issues. For a validation and refinement of this concept, simulation tools are being refined and applied for equilibrium, kinetic and mode control studies.
  •  
8.
  • Cecconello, Marco, et al. (author)
  • First observations of confined fast ions in MAST Upgrade with an upgraded neutron camera
  • 2023
  • In: Plasma Physics and Controlled Fusion. - : Institute of Physics Publishing (IOPP). - 0741-3335 .- 1361-6587. ; 65:3
  • Journal article (peer-reviewed)abstract
    • Spherical tokamaks are key to the successful design of operating scenarios of future fusion reactors in the areas of divertor physics, neutral beam current drive and fast ion physics. MAST Upgrade, which has successfully concluded its first experimental campaign, was specifically designed to address the role of the radial gradient of the fast ion distribution in driving the excitation of magneto-hydrodynamic (MHD) instabilities, such as toroidal Alfven eigenmodes, fish-bones and long-lived mode, thanks to its two tangential neutral beam injection systems, one on the equatorial plane and one that is vertically shifted 65 cm above the equatorial plane. To study the fast ion dynamics in the presence of such instabilities, as well as of sawteeth and neo-classical tearing modes, several fast ion diagnostics were upgraded and new ones added. Among them, the MAST prototype neutron camera (NC) has been upgraded to six, equatorial sight-lines. The first observations of the confined fast ion behavior with the upgraded NC in a wide range of plasma scenarios characterized by on-axis and/or off-axis heating and different MHD instabilities are presented here. The observations presented in this study confirm previous results on MAST but with a higher level of detail and highlight new physics observations unique to the MAST Upgrade. The results presented here confirm the improved performance of the NC Upgrade, which thus becomes one of the key elements, in combination with the rich set of fast ion diagnostics available on the MAST Upgrade, for a more constrained modeling of the fast ion dynamics in fusion reactor relevant scenarios.
  •  
9.
  •  
10.
  • Esposito, B., et al. (author)
  • Progress of Design and Development for the ITER Radial Neutron Camera
  • 2022
  • In: Journal of fusion energy. - : Springer. - 0164-0313 .- 1572-9591. ; 41:2
  • Journal article (peer-reviewed)abstract
    • The paper presents an overview of the design status of the Radial Neutron Camera (RNC), that, together with the Vertical Neutron Camera, will provide, through reconstruction techniques applied to the measured line-integrated neutron fluxes, the time resolved measurement of the ITER neutron and alpha-source profile (i.e. neutron emissivity, neutrons emitted per unit time and volume). The RNC is composed of two subsystems, the In-Port RNC and Ex-Port RNC located, respectively, inside and outside the Plug of Equatorial Port #01. The In-Port subsystem is in a more advanced design stage since it has recently undergone the Final Design Review in the ITER procurement process. The paper describes the diagnostic layout, the interfaces, the measurement capabilities and the main challenges in its realization. Prototyping and testing of neutron detectors and electronics components were carried out and led to the choice of the component solutions that can match the environmental and operational constraints in terms radiation hardness, high temperature and electromagnetic compatibility. The performance of the RNC in terms of neutron emissivity measurement capability was assessed through 1D and 2D reconstruction analysis. It is proven that the neutron emissivity can be reconstructed in real-time within the measurement requirements: 10% accuracy, 10 ms time resolution and a/10 (a = plasma minor radius) space resolution.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view