SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Conde J.)) srt2:(2015-2019) srt2:(2017)"

Search: (WFRF:(Conde J.)) srt2:(2015-2019) > (2017)

  • Result 1-10 of 25
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Ackermann, M., et al. (author)
  • The Fermi Galactic Center GeV Excess and Implications for Dark Matter
  • 2017
  • In: Astrophysical Journal. - : Institute of Physics Publishing. - 0004-637X .- 1538-4357. ; 840:1
  • Journal article (peer-reviewed)abstract
    • The region around the Galactic Center (GC) is now well established to be brighter at energies of a few GeV than what is expected from conventional models of diffuse gamma-ray emission and catalogs of known gamma-ray sources. We study the GeV excess using 6.5 yr of data from the Fermi Large Area Telescope. We characterize the uncertainty of the GC excess spectrum and morphology due to uncertainties in cosmic-ray source distributions and propagation, uncertainties in the distribution of interstellar gas in the Milky Way, and uncertainties due to a potential contribution from the Fermi bubbles. We also evaluate uncertainties in the excess properties due to resolved point sources of gamma rays. The GC is of particular interest, as it would be expected to have the brightest signal from annihilation of weakly interacting massive dark matter (DM) particles. However, control regions along the Galactic plane, where a DM signal is not expected, show excesses of similar amplitude relative to the local background. Based on the magnitude of the systematic uncertainties, we conservatively report upper limits for the annihilation cross-section as a function of particle mass and annihilation channel.
  •  
6.
  • Silventoinen, K., et al. (author)
  • Differences in genetic and environmental variation in adult BMI by sex, age, time period, and region : An individual-based pooled analysis of 40 twin cohorts
  • 2017
  • In: American Journal of Clinical Nutrition. - : Oxford University Press. - 0002-9165 .- 1938-3207. ; 106:2, s. 457-466
  • Journal article (peer-reviewed)abstract
    • Background: Genes and the environment contribute to variation in adult body mass index [BMI (in kg/m2)], but factors modifying these variance components are poorly understood.Objective: We analyzed genetic and environmental variation in BMI between men and women from young adulthood to old age from the 1940s to the 2000s and between cultural-geographic regions representing high (North America and Australia), moderate (Europe), and low (East Asia) prevalence of obesity.Design: We used genetic structural equation modeling to analyze BMI in twins ≥20 y of age from 40 cohorts representing 20 countries (140,379 complete twin pairs).Results: The heritability of BMI decreased from 0.77 (95% CI: 0.77, 0.78) and 0.75 (95% CI: 0.74, 0.75) in men and women 20-29 y of age to 0.57 (95% CI: 0.54, 0.60) and 0.59 (95% CI: 0.53, 0.65) in men 70-79 y of age and women 80 y of age, respectively. The relative influence of unique environmental factors correspondingly increased. Differences in the sets of genes affecting BMI in men and women increased from 20-29 to 60-69 y of age. Mean BMI and variances in BMI increased from the 1940s to the 2000s and were greatest in North America and Australia, followed by Europe and East Asia. However, heritability estimates were largely similar over measurement years and between regions. There was no evidence of environmental factors shared by co-twins affecting BMI.Conclusions: The heritability of BMI decreased and differences in the sets of genes affecting BMI in men and women increased from young adulthood to old age. The heritability of BMI was largely similar between cultural-geographic regions and measurement years, despite large differences in mean BMI and variances in BMI. Our results show a strong influence of genetic factors on BMI, especially in early adulthood, regardless of the obesity level in the population.
  •  
7.
  • Giese, A. K., et al. (author)
  • Design and rationale for examining neuroimaging genetics in ischemic stroke The MRI-GENIE study
  • 2017
  • In: Neurology-Genetics. - : Ovid Technologies (Wolters Kluwer Health). - 2376-7839. ; 3:5
  • Journal article (peer-reviewed)abstract
    • Objective: To describe the design and rationale for the genetic analysis of acute and chronic cerebrovascular neuroimaging phenotypes detected on clinical MRI in patients with acute ischemic stroke (AIS) within the scope of the MRI-GENetics Interface Exploration (MRI-GENIE) study.& para;& para;Methods: MRI-GENIE capitalizes on the existing infrastructure of the Stroke Genetics Network (SiGN). In total, 12 international SiGN sites contributed MRIs of 3,301 patients with AIS. Detailed clinical phenotyping with the web-based Causative Classification of Stroke (CCS) system and genome-wide genotyping data were available for all participants. Neuroimaging analyses include the manual and automated assessments of established MRI markers. A high-throughput MRI analysis pipeline for the automated assessment of cerebrovascular lesions on clinical scans will be developed in a subset of scans for both acute and chronic lesions, validated against gold standard, and applied to all available scans. The extracted neuroimaging phenotypes will improve characterization of acute and chronic cerebrovascular lesions in ischemic stroke, including CCS subtypes, and their effect on functional outcomes after stroke. Moreover, genetic testing will uncover variants associated with acute and chronic MRI manifestations of cerebrovascular disease.& para;& para;Conclusions: The MRI-GENIE study aims to develop, validate, and distribute the MRI analysis platform for scans acquired as part of clinical care for patients with AIS, which will lead to (1) novel genetic discoveries in ischemic stroke, (2) strategies for personalized stroke risk assessment, and (3) personalized stroke outcome assessment.
  •  
8.
  • Ackermann, M., et al. (author)
  • Observations of M31 and M33 with the Fermi Large Area Telescope : A Galactic Center Excess in Andromeda?
  • 2017
  • In: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 836:2
  • Journal article (peer-reviewed)abstract
    • The Fermi Large Area Telescope (LAT) has opened the way for comparative studies of cosmic rays (CRs) and high-energy objects in the Milky Way (MW) and in other, external, star-forming galaxies. Using 2 yr of observations with the Fermi LAT, Local Group galaxy M31 was detected as a marginally extended gamma-ray source, while only an upper limit has been derived for the other nearby galaxy M33. We revisited the gamma-ray emission in the direction of M31 and M33 using more than 7 yr of LAT Pass 8 data in the energy range 0.1-100 GeV, presenting detailed morphological and spectral analyses. M33 remains undetected, and we computed an upper limit of 2.0 x 10(-12) erg cm(-2) s(-1) on the 0.1-100 GeV energy flux (95% confidence level). This revised upper limit remains consistent with the observed correlation between gamma-ray luminosity and star formation rate tracers and implies an average CR density in M33 that is at most half of that of the MW. M31 is detected with a significance of nearly 10 sigma. Its spectrum is consistent with a power law with photon index Gamma = 2.4 +/- 0.1(stat) (vertical bar) (syst) and a 0.1-100 GeV energy flux of (5.6 +/- 0.6(stat vertical bar syst)) x 10(-12) erg cm(-1) s(-1). M31 is detected to be extended with a 4 sigma significance. The spatial distribution of the emission is consistent with a uniform-brightness disk with a radius of 0 degrees.4 and no offset from the center of the galaxy, but nonuniform intensity distributions cannot be excluded. The flux from M31 appears confined to the inner regions of the galaxy and does not fill the disk of the galaxy or extend far from it. The gamma-ray signal is not correlated with regions rich in gas or star formation activity, which suggests that the emission is not interstellar in origin, unless the energetic particles radiating in gamma rays do not originate in recent star formation. Alternative and nonexclusive interpretations are that the emission results from a population of millisecond pulsars dispersed in the bulge and disk of M31 by disrupted globular clusters or from the decay or annihilation of dark matter particles, similar to what has been proposed to account for the so-called Galactic center excess found in Fermi-LAT observations of the MW.
  •  
9.
  • Albert, A., et al. (author)
  • SEARCHING FOR DARK MATTER ANNIHILATION IN RECENTLY DISCOVERED MILKY WAY SATELLITES WITH FERMI-LAT
  • 2017
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 834:2
  • Journal article (peer-reviewed)abstract
    • We search for excess gamma-ray emission coincident with the positions of confirmed and candidate Milky Way satellite galaxies using six years of data from the Fermi Large Area Telescope (LAT). Our sample of 45 stellar systems includes 28 kinematically confirmed dark-matter-dominated dwarf spheroidal galaxies (dSphs) and 17 recently discovered systems that have photometric characteristics consistent with the population of known dSphs. For each of these targets, the relative predicted gamma-ray flux due to dark matter annihilation is taken from kinematic analysis if available, and estimated from a distance-based scaling relation otherwise, assuming that the stellar systems are DM-dominated dSphs. LAT data coincident with four of the newly discovered targets show a slight preference (each similar to 2 sigma local) for gamma-ray emission in excess of the background. However, the ensemble of derived gamma-ray flux upper limits for individual targets is consistent with the expectation from analyzing random blank-sky regions, and a combined analysis of the population of stellar systems yields no globally significant excess (global significance < 1 sigma). Our analysis has increased sensitivity compared to the analysis of 15 confirmed dSphs by Ackermann et al. The observed constraints on the DM annihilation cross section are statistically consistent with the background expectation, improving by a factor of similar to 2 for large DM masses (m(DM, b<(b)over bar>) greater than or similar to 1 TeV and m(DM, tau+tau-) greater than or similar to 70 GeV) and weakening by a factor of similar to 1.5 at lower masses relative to previously observed limits.
  •  
10.
  • Bernatsky, Sasha, et al. (author)
  • Lupus-related single nucleotide polymorphisms and risk of diffuse large B-cell lymphoma
  • 2017
  • In: Lupus Science and Medicine. - : BMJ. - 2053-8790. ; 4:1
  • Journal article (peer-reviewed)abstract
    • Objective: Determinants of the increased risk of diffuse large B-cell lymphoma (DLBCL) in SLE are unclear. Using data from a recent lymphoma genome-wide association study (GWAS), we assessed whether certain lupus-related single nucleotide polymorphisms (SNPs) were also associated with DLBCL. Methods: GWAS data on European Caucasians from the International Lymphoma Epidemiology Consortium (InterLymph) provided a total of 3857 DLBCL cases and 7666 general-population controls. Data were pooled in a random-effects meta-analysis. Results: Among the 28 SLE-related SNPs investigated, the two most convincingly associated with risk of DLBCL included the CD40 SLE risk allele rs4810485 on chromosome 20q13 (OR per risk allele=1.09, 95% CI 1.02 to 1.16, p=0.0134), and the HLA SLE risk allele rs1270942 on chromosome 6p21.33 (OR per risk allele=1.17, 95% CI 1.01 to 1.36, p=0.0362). Of additional possible interest were rs2205960 and rs12537284. The rs2205960 SNP, related to a cytokine of the tumour necrosis factor superfamily TNFSF4, was associated with an OR per risk allele of 1.07, 95% CI 1.00 to 1.16, p=0.0549. The OR for the rs12537284 (chromosome 7q32, IRF5 gene) risk allele was 1.08, 95% CI 0.99 to 1.18, p=0.0765. Conclusions: These data suggest several plausible genetic links between DLBCL and SLE.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view