SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Corradi M.)) srt2:(2020-2024) srt2:(2023)"

Sökning: (WFRF:(Corradi M.)) srt2:(2020-2024) > (2023)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ballan, M., et al. (författare)
  • Nuclear physics midterm plan at Legnaro National Laboratories (LNL)
  • 2023
  • Ingår i: European Physical Journal Plus. - 2190-5444. ; 138:8, s. 3-26
  • Tidskriftsartikel (refereegranskat)abstract
    • The next years will see the completion of the radioactive ion beam facility SPES (Selective Production of Exotic Species) and the upgrade of the accelerators complex at Istituto Nazionale di Fisica Nucleare – Legnaro National Laboratories (LNL) opening up new possibilities in the fields of nuclear structure, nuclear dynamics, nuclear astrophysics, and applications. The nuclear physics community has organised a workshop to discuss the new physics opportunities that will be possible in the near future by employing state-of-the-art detection systems. A detailed discussion of the outcome from the workshop is presented in this report.
  •  
2.
  • Valiente-Dobon, J. J., et al. (författare)
  • Conceptual design of the AGATA 2 pi array at LNL
  • 2023
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 1049
  • Tidskriftsartikel (refereegranskat)abstract
    • The Advanced GAmma Tracking Array (AGATA) has been installed at Laboratori Nazionali di Legnaro (LNL), Italy. In this installation, AGATA will consist, at the beginning, of 13 AGATA triple clusters (ATCs) with an angular coverage of 1n,and progressively the number of ATCs will increase up to a 2 pi angular coverage. This setup will exploit both stable and radioactive ion beams delivered by the Tandem-PIAVE-ALPI accelerator complex and the SPES facility. The new implementation of AGATA at LNL will be used in two different configurations, firstly one coupled to the PRISMA large-acceptance magnetic spectrometer and lately a second one at Zero Degrees, along the beam line. These two configurations will allow us to cover a broad physics program, using different reaction mechanisms, such as Coulomb excitation, fusion-evaporation, transfer and fission at energies close to the Coulomb barrier. These setups have been designed to be coupled with a large variety of complementary detectors such as charged particle detectors, neutron detectors, heavy-ion detectors, high-energy gamma-ray arrays, cryogenic and gasjet targets and the plunger device for lifetime measurements. We present in this paper the conceptual design, characteristics and performance figures of this implementation of AGATA at LNL.
  •  
3.
  • Bohannon, Briana M., et al. (författare)
  • Mechanistic insights into robust cardiac I-Ks potassium channel activation by aromatic polyunsaturated fatty acid analogues
  • 2023
  • Ingår i: eLIFE. - : eLIFE SCIENCES PUBL LTD. - 2050-084X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Voltage-gated potassium (K-V) channels are important regulators of cellular excitability and control action potential repolarization in the heart and brain. K-V channel mutations lead to disordered cellular excitability. Loss-of-function mutations, for example, result in membrane hyperexcitability, a characteristic of epilepsy and cardiac arrhythmias. Interventions intended to restore K-V channel function have strong therapeutic potential in such disorders. Polyunsaturated fatty acids (PUFAs) and PUFA analogues comprise a class of K-V channel activators with potential applications in the treatment of arrhythmogenic disorders such as long QT syndrome (LQTS). LQTS is caused by a loss-of-function of the cardiac I-Ks channel - a tetrameric potassium channel complex formed by K(V)7.1 and associated KCNE1 protein subunits. We have discovered a set of aromatic PUFA analogues that produce robust activation of the cardiac I-Ks channel, and a unique feature of these PUFA analogues is an aromatic, tyrosine head group. We determine the mechanisms through which tyrosine PUFA analogues exert strong activating effects on the I-Ks channel by generating modified aromatic head groups designed to probe cation-pi interactions, hydrogen bonding, and ionic interactions. We found that tyrosine PUFA analogues do not activate the I-Ks channel through cation-pi interactions, but instead do so through a combination of hydrogen bonding and ionic interactions.
  •  
4.
  • Hiniesto Iñigo, Irene, et al. (författare)
  • Endocannabinoids enhance hKV7.1/KCNE1 channel function and shorten the cardiac action potential and QT interval
  • 2023
  • Ingår i: EBioMedicine. - : ELSEVIER. - 2352-3964. ; 89
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Genotype-positive patients who suffer from the cardiac channelopathy Long QT Syndrome (LQTS) may display a spectrum of clinical phenotypes, with often unknown causes. Therefore, there is a need to identify factors influencing disease severity to move towards an individualized clinical management of LQTS. One possible factor influencing the disease phenotype is the endocannabinoid system, which has emerged as a modulator of cardio-vascular function. In this study, we aim to elucidate whether endocannabinoids target the cardiac voltage-gated potassium channel KV7.1/KCNE1, which is the most frequently mutated ion channel in LQTS.Methods We used two-electrode voltage clamp, molecular dynamics simulations and the E4031 drug-induced LQT2 model of ex-vivo guinea pig hearts.Findings We found a set of endocannabinoids that facilitate channel activation, seen as a shifted voltage-dependence of channel opening and increased overall current amplitude and conductance. We propose that negatively charged endocannabinoids interact with known lipid binding sites at positively charged amino acids on the channel, providing structural insights into why only specific endocannabinoids modulate KV7.1/KCNE1. Using the endocannabinoid ARA-S as a prototype, we show that the effect is not dependent on the KCNE1 subunit or the phosphorylation state of the channel. In guinea pig hearts, ARA-S was found to reverse the E4031-prolonged action potential duration and QT interval. Interpretation We consider the endocannabinoids as an interesting class of hKV7.1/KCNE1 channel modulators with putative protective effects in LQTS contexts.Copyright (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy