SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Csizmadia Sz)) srt2:(2018)"

Search: (WFRF:(Csizmadia Sz)) > (2018)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Barragán, O., et al. (author)
  • K2-139 b: a low-mass warm Jupiter on a 29-d orbit transiting an active K0 V star
  • 2018
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 475:2, s. 1765-1776
  • Journal article (peer-reviewed)abstract
    • We announce the discovery of K2-139 b (EPIC 218916923 b), a transiting warm-Jupiter (Teq = 547 ± 25 K) on a 29-d orbit around an active (log R'_HK = -4.46 ± 0.06) K0V star in K2 Campaign 7. We derive the system's parameters by combining the K2 photometry with ground-based follow-up observations. With a mass of 0.387_-0.075^+0.083 M_J and radius of 0.808_-0.033^+0.034 R_J, K2-139 b is one of the transiting warm Jupiters with the lowest mass known to date. The planetary mean density of 0.91_-0.20^+0.24 g/cm^3 can be explained with a core of ~50 M⊕. Given the brightness of the host star (V = 11.653 mag), the relatively short transit duration (~5 h), and the expected amplitude of the Rossiter-McLaughlin effect (~25m/s), K2-139 is an ideal target to measure the spin-orbit angle of a planetary system hosting a warm Jupiter.
  •  
2.
  • Livingston, J.H., et al. (author)
  • 44 Validated Planets from K2 Campaign 10
  • 2018
  • In: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 156:2
  • Journal article (peer-reviewed)abstract
    • We present 44 validated planets from the 10th observing campaign of the NASA K2 mission, as well as high-resolution spectroscopy and speckle imaging follow-up observations. These 44 planets come from an initial set of 72 vetted candidates, which we subjected to a validation process incorporating pixel-level analyses, light curve analyses, observational constraints, and statistical false positive probabilities. Our validated planet sample has median values of Rp = 2.2 R_earth , P_orb = 6.9 days, T_eq = 890 K, and J = 11.2 mag. Of particular interest are four ultra-short period planets (P_orb}≲ 1 day), 16 planets smaller than 2 R_earth, and two planets with large predicted amplitude atmospheric transmission features orbiting infrared-bright stars. We also present 27 planet candidates, most of which are likely to be real and worthy of further observations. Our validated planet sample includes 24 new discoveries and has enhanced the number of currently known super-Earths (R_p ≈ 1–2 R_earth), sub-Neptunes (Rp ≈ 2–4 R_earth, and sub-Saturns (Rp ≈ 4–8 R_earth) orbiting bright stars (J = 8–10 mag) by ∼4%, ∼17%, and ∼11%, respectively.
  •  
3.
  • Persson, Carina, 1964, et al. (author)
  • Super-Earth of 8 Mearth in a 2.2-day orbit around the K5V star K2-216
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 618:33
  • Journal article (peer-reviewed)abstract
    • Although thousands of exoplanets have been discovered to date, far fewer have been fully characterised, in particular super- Earths. The KESPRINT consortium identified K2-216 as a planetary candidate host star in the K2 space mission Campaign 8 field with a transiting super-Earth. The planet has recently been validated as well. Our aim was to confirm the detection and derive the main physical characteristics of K2-216b, including the mass. We performed a series of follow-up observations: high resolution imaging with the FastCam camera at the TCS, the Infrared Camera and Spectrograph at Subaru, and high resolution spectroscopy with HARPS (ESO, La Silla), HARPS-N (TNG), and FIES (NOT). The stellar spectra were analyzed with the SpecMatch-Emp and SME codes to derive the stellar fundamental properties. We analyzed the K2 light curve with the Pyaneti software. The radial-velocity measurements were modelled with both a Gaussian process (GP) regression and the floating chunk offset (FCO) technique to simultaneously model the planetary signal and correlated noise associated with stellar activity. Imaging confirms that K2-216 is a single star. Our analysis discloses that the star is a moderately active K5V star of mass 0.70+/-0.03 Msun and radius 0.72+/-0.03 Rsun. Planet b is found to have a radius of 1.75+0.17-0.10 Rearth and a 2.17-day orbit in agreement with previous results. We find consistent results for the planet mass from both models: 7.4+/-2.2 Mearth from the GP regression, and 8.0+/-1.6 Mearth from the FCO technique, which implies that this planet is a super-Earth. The planet parameters put planet b in the middle of, or just below, the gap of the radius distribution of small planets. The density is consistent with a rocky composition of primarily iron and magnesium silicate. In agreement with theoretical predictions, we find that the planet is a remnant core, stripped of its atmosphere, and is one of the largest planets found that has lost its atmosphere.
  •  
4.
  • Smith, A. M. S., et al. (author)
  • K2-137 b: an Earth-sized planet in a 4.3-h orbit around an M-dwarf
  • 2018
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 474:4, s. 5523-5533
  • Journal article (peer-reviewed)abstract
    • We report the discovery in K2's Campaign 10 of a transiting terrestrial planet in an ultra-short-period orbit around an M3-dwarf. K2-137 b completes an orbit in only 4.3 h, the second shortest orbital period of any known planet, just 4 min longer than that of KOI 1843.03, which also orbits an M-dwarf. Using a combination of archival images, adaptive optics imaging, radial velocity measurements, and light-curve modelling, we show that no plausible eclipsing binary scenario can explain the K2 light curve, and thus confirm the planetary nature of the system. The planet, whose radius we determine to be 0.89 ± 0.09 R⊕, and which must have an iron mass fraction greater than 0.45, orbits a star of mass 0.463 ± 0.052 M⊙ and radius 0.442 ± 0.044 R⊙.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view