SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Du Hao)) srt2:(2020-2024)"

Search: (WFRF:(Du Hao)) > (2020-2024)

  • Result 1-10 of 43
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Beal, Jacob, et al. (author)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  •  
3.
  • Davies, Stuart J., et al. (author)
  • ForestGEO: Understanding forest diversity and dynamics through a global observatory network
  • 2021
  • In: Biological Conservation. - : Elsevier BV. - 0006-3207. ; 253
  • Journal article (peer-reviewed)abstract
    • ForestGEO is a network of scientists and long-term forest dynamics plots (FDPs) spanning the Earth's major forest types. ForestGEO's mission is to advance understanding of the diversity and dynamics of forests and to strengthen global capacity for forest science research. ForestGEO is unique among forest plot networks in its large-scale plot dimensions, censusing of all stems ≥1 cm in diameter, inclusion of tropical, temperate and boreal forests, and investigation of additional biotic (e.g., arthropods) and abiotic (e.g., soils) drivers, which together provide a holistic view of forest functioning. The 71 FDPs in 27 countries include approximately 7.33 million living trees and about 12,000 species, representing 20% of the world's known tree diversity. With >1300 published papers, ForestGEO researchers have made significant contributions in two fundamental areas: species coexistence and diversity, and ecosystem functioning. Specifically, defining the major biotic and abiotic controls on the distribution and coexistence of species and functional types and on variation in species' demography has led to improved understanding of how the multiple dimensions of forest diversity are structured across space and time and how this diversity relates to the processes controlling the role of forests in the Earth system. Nevertheless, knowledge gaps remain that impede our ability to predict how forest diversity and function will respond to climate change and other stressors. Meeting these global research challenges requires major advances in standardizing taxonomy of tropical species, resolving the main drivers of forest dynamics, and integrating plot-based ground and remote sensing observations to scale up estimates of forest diversity and function, coupled with improved predictive models. However, they cannot be met without greater financial commitment to sustain the long-term research of ForestGEO and other forest plot networks, greatly expanded scientific capacity across the world's forested nations, and increased collaboration and integration among research networks and disciplines addressing forest science.
  •  
4.
  • Fang, Aoqi, et al. (author)
  • Advancements in Micro-LED Performance through Nanomaterials and Nanostructures: A Review
  • 2024
  • In: Nanomaterials. - 2079-4991. ; 14:11
  • Research review (peer-reviewed)abstract
    • Micro-light-emitting diodes (μLEDs), with their advantages of high response speed, long lifespan, high brightness, and reliability, are widely regarded as the core of next-generation display technology. However, due to issues such as high manufacturing costs and low external quantum efficiency (EQE), μLEDs have not yet been truly commercialized. Additionally, the color conversion efficiency (CCE) of quantum dot (QD)-μLEDs is also a major obstacle to its practical application in the display industry. In this review, we systematically summarize the recent applications of nanomaterials and nanostructures in μLEDs and discuss the practical effects of these methods on enhancing the luminous efficiency of μLEDs and the color conversion efficiency of QD-μLEDs. Finally, the challenges and future prospects for the commercialization of μLEDs are proposed.
  •  
5.
  • Fang, Aoqi, et al. (author)
  • High Color Conversion Efficiency Realized in Graphene-Connected Nanorod Micro-LEDs Using Hybrid Ag Nanoparticles and Quantum Dots
  • 2024
  • In: Advanced Optical Materials. - 2195-1071. ; 12:19
  • Journal article (peer-reviewed)abstract
    • In this paper, a uniform nanorod (NR) array is etched onto the surface of Micro-Light-Emitting-Diodes (µLEDs) and mix Ag nanoparticles (NPs) with QDs to fill the gaps between the nanorods. Simultaneously, the study utilizes graphene to connect individual nanorods and enhance current spreading. The nanorod array's structure significantly reduces the distance between the QDs and the quantum well (QW), reducing energy loss from the excitation light source through a non-radiative energy transfer (NRET) mechanism. Additionally, the Ag NPs function as localized surface plasmons (LSPs), further enhancing the CCE of QDs via the absorption resonance. In this study, the effects of two types of Ag NPs are compared with different absorption resonance peaks on device performance. The results demonstrate that Ag NPs with absorption resonance peaks matching the emission wavelength of QDs play a more crucial role in the system. This configuration achieves a CCE of 77.78% for µLEDs with nanorod arrays, operating at a current of 10 mA. Compared to the conventional µLED structure with QDs only on the surface, the proposed method improves the CCE of µLEDs by an impressive 86.5%. This outcome underscores the significant contribution of the NR structure and LSPs in enhancing the CCE of QD-µLEDs.
  •  
6.
  • Fang, Aoqi, et al. (author)
  • Localized surface plasmon-enhanced nanorod micro-LEDs with Ag nanoparticles embedded in insulating and planarizing spin-on glass
  • 2024
  • In: Applied Physics Letters. - 0003-6951 .- 1077-3118. ; 125:2
  • Journal article (peer-reviewed)abstract
    • To enhance the emission of GaN-based Micro-LEDs (μLEDs), we etched uniform nanorods (NRs) on the μLED surface and filled the nanorod gaps with spin-on glass (SOG) containing mixed Ag nanoparticles (NPs). The nanorod structure creates a conducive environment for close interaction between Ag NPs and quantum wells (QWs), facilitating the coupling of Ag NPs as localized surface plasmons (LSPs) with the QWs to enhance light emission. The SOG acts as an insulating layer between Ag NPs and NRs, preventing electron leakage, while also serving as a planarization material for the nanorod structure. This configuration allows for the fabrication of a planar Indium Tin Oxide layer without short-circuiting the nanorod structure. Compared to traditional planar Micro-LEDs, NR-μLEDs with SOG-encased Ag NPs exhibit a 50% increase in electroluminescence (EL) intensity and a 56% increase in photoluminescence (PL) intensity. This work paves the way for broader applications of LSP in μLEDs.
  •  
7.
  • Fenstermacher, M.E., et al. (author)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Journal article (peer-reviewed)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
8.
  • Chan, Yi-Hao, et al. (author)
  • SARS-CoV-2 brainstem encephalitis in human inherited DBR1 deficiency.
  • 2024
  • In: The Journal of experimental medicine. - 1540-9538. ; 221:9
  • Journal article (peer-reviewed)abstract
    • Inherited deficiency of the RNA lariat-debranching enzyme 1 (DBR1) is a rare etiology of brainstem viral encephalitis. The cellular basis of disease and the range of viral predisposition are unclear. We report inherited DBR1 deficiency in a 14-year-old boy who suffered from isolated SARS-CoV-2 brainstem encephalitis. The patient is homozygous for a previously reported hypomorphic and pathogenic DBR1 variant (I120T). Consistently, DBR1 I120T/I120T fibroblasts from affected individuals from this and another unrelated kindred have similarly low levels of DBR1 protein and high levels of RNA lariats. DBR1 I120T/I120T human pluripotent stem cell (hPSC)-derived hindbrain neurons are highly susceptible to SARS-CoV-2 infection. Exogenous WT DBR1 expression in DBR1 I120T/I120T fibroblasts and hindbrain neurons rescued the RNA lariat accumulation phenotype. Moreover, expression of exogenous RNA lariats, mimicking DBR1 deficiency, increased the susceptibility of WT hindbrain neurons to SARS-CoV-2 infection. Inborn errors of DBR1 impair hindbrain neuron-intrinsic antiviral immunity, predisposing to viral infections of the brainstem, including that by SARS-CoV-2.
  •  
9.
  • Du, Hao, et al. (author)
  • Bipolar HiPIMS : The role of capacitive coupling in achieving ion bombardment during growth of dielectric thin films
  • 2021
  • In: Surface & Coatings Technology. - : Elsevier BV. - 0257-8972 .- 1879-3347. ; 416
  • Journal article (peer-reviewed)abstract
    • Bipolar high-power impulse magnetron sputtering (HiPIMS) is used to achieve ion acceleration for ion bombardment of dielectric thin films. This is realized by increasing the plasma potential (U-p), during the interval in-between the HiPIMS-pulses, using a positive reversed voltage (U-rev). As long as the film surface potential (U-s) is maintained low, close to ground potential, this increase in U-p results in ion-acceleration as ions approach the film surface. The effect of U-rev on the ion bombardment is demonstrated by the growth of dielectric (Al,Cr)(2)O-3 films on two sets of substrates, Si (001) and sapphire (0001) utilizing a U-rev ranging from 0 to 300 V. A clear ion bombardment effect is detected in films grown on the conductive Si substrate, while no, or a very small, effect is observed in films grown on the dielectric sapphire substrate. This is ascribed to the changes in U-s when the substrate is subjected to the bombardment of positive ions. For a film surface that has a high capacitance to ground, U-s remains close to ground potential for an extended time in-between the HiPIMS pulses, while if the capacitance is low, U-s quickly attains floating potential (U-float) close to U-p. The simulated temporal evolutions of U-s for the films by using capacitors show that for a 1 mu m thick (Al,Cr)(2)O-3 film on a conductive substrate, U-s is maintained close to ground potential during the entire 20 mu s that U-rev is applied after the HiPIMS pulse. On the other hand, when a capacitance corresponding to the 0.5 mm thick sapphire substrate is used, U-s rapidly attains a potential close to U-rev.
  •  
10.
  • Du, Hao, et al. (author)
  • Corundum-structured AlCrNbTi oxide film grown using high-energy early-arriving ion irradiation in high-power impulse magnetron sputtering
  • 2023
  • In: Scripta Materialia. - : Elsevier. - 1359-6462 .- 1872-8456. ; 234
  • Journal article (peer-reviewed)abstract
    • Multicomponent or high-entropy oxide films are of interest due to their remarkable structure and properties. Here, energetic ion irradiation is utilized for controlling the phase formation and structure of AlCrNbTi oxide at growth temperature of 500 degrees C. The ion acceleration is achieved by using a high-power impulse magnetron sputtering (HiPIMS) discharge, accompanied by a 10 & mu;s-long synchronized substrate bias (Usync), to minimize the surface charging effect and accelerate early-arriving ions, mainly Al+, O+, Ar2+, and Al2+. By increasing the magnitude of Usync from-100 V to-500 V, the film structure changes from amorphous to single-phase corundum, followed by the formation of high-number-density stacking faults (or nanotwins) at Usync =-500 V. This approach paves the way to tailor the high-temperature-phase and defect formation of oxide films at low growth temperature, with prospects for use in protective-coating and dielectric applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 43

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view