SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Espinosa Elena)) srt2:(2020-2022)"

Search: (WFRF:(Espinosa Elena)) > (2020-2022)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Pick, Cari M., et al. (author)
  • Fundamental social motives measured across forty-two cultures in two waves
  • 2022
  • In: Scientific Data. - : Springer Nature. - 2052-4463. ; 9
  • Journal article (peer-reviewed)abstract
    • How does psychology vary across human societies? The fundamental social motives framework adopts an evolutionary approach to capture the broad range of human social goals within a taxonomy of ancestrally recurring threats and opportunities. These motives-self-protection, disease avoidance, affiliation, status, mate acquisition, mate retention, and kin care-are high in fitness relevance and everyday salience, yet understudied cross-culturally. Here, we gathered data on these motives in 42 countries (N = 15,915) in two cross-sectional waves, including 19 countries (N = 10,907) for which data were gathered in both waves. Wave 1 was collected from mid-2016 through late 2019 (32 countries, N = 8,998; 3,302 male, 5,585 female; M-age = 24.43, SD = 7.91). Wave 2 was collected from April through November 2020, during the COVID-19 pandemic (29 countries, N = 6,917; 2,249 male, 4,218 female; M-age = 28.59, SD = 11.31). These data can be used to assess differences and similarities in people's fundamental social motives both across and within cultures, at different time points, and in relation to other commonly studied cultural indicators and outcomes.
  •  
2.
  • Espinosa, Elena, et al. (author)
  • L-Arabinose Induces the Formation of Viable Nonproliferating Spheroplasts in Vibrio cholerae
  • 2021
  • In: Applied and Environmental Microbiology. - : American Society for Microbiology. - 0099-2240 .- 1098-5336. ; 87:5
  • Journal article (peer-reviewed)abstract
    • Vibrio cholerae, the agent of the deadly human disease cholera, propagates as a curved rod-shaped bacterium in warm waters. It is sensitive to cold but persists in cold waters in the form of viable but nondividing coccoidal-shaped cells. Additionally, V. cholerae is able to form nonproliferating spherical cells in response to cell wall damage. It was recently reported that L-arabinose, a component of the hemicellulose and pectin of terrestrial plants, stops the growth of V. cholerae. Here, we show that L-arabinose induces the formation of spheroplasts that lose the ability to divide and stop growing in volume over time. However, they remain viable, and upon removal of L-arabinose, they start expanding in volume, form branched structures, and give rise to cells with a normal morphology after a few divisions. We further show that WigKR, a histidine kinase/response regulator pair implicated in the induction of high-level expression of cell wall synthetic genes, prevents the lysis of the spheroplasts during growth restart. Finally, we show that the physiological perturbations result from the import and catabolic processing of L-arabinose by the V. cholerae homolog of the Escherichia coli galactose transport and catabolic system. Taken together, our results suggest that the formation of nongrowing spherical cells is a common response of vibrios exposed todetrimental conditions. They also permit us to define conditions preventing any physiological perturbation of V. cholerae when using L-arabinose to induce gene expression from the tightly regulated promoter of the Escherichia coli araBAD operon.
  •  
3.
  • Kapun, Martin, et al. (author)
  • Drosophila Evolution over Space and Time (DEST) : A New Population Genomics Resource
  • 2021
  • In: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 38:12, s. 5782-5805
  • Journal article (peer-reviewed)abstract
    • Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome data sets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate data sets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from over 100 locations in >20 countries on four continents. Several of these locations have been sampled at different seasons across multiple years. This data set, which we call Drosophila Evolution over Space and Time (DEST), is coupled with sampling and environmental metadata. A web-based genome browser and web portal provide easy access to the SNP data set. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is to provide this scalable platform as a community resource which can be easily extended via future efforts for an even more extensive cosmopolitan data set. Our resource will enable population geneticists to analyze spatiotemporal genetic patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail.
  •  
4.
  • Madrigal-Gonzalez, Jaime, et al. (author)
  • Climate reverses directionality in the richness-abundance relationship across the World's main forest biomes
  • 2020
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • More tree species can increase the carbon storage capacity of forests (here referred to as the more species hypothesis) through increased tree productivity and tree abundance resulting from complementarity, but they can also be the consequence of increased tree abundance through increased available energy (more individuals hypothesis). To test these two contrasting hypotheses, we analyse the most plausible pathways in the richness-abundance relationship and its stability along global climatic gradients. We show that positive effect of species richness on tree abundance only prevails in eight of the twenty-three forest regions considered in this study. In the other forest regions, any benefit from having more species is just as likely (9 regions) or even less likely (6 regions) than the effects of having more individuals. We demonstrate that diversity effects prevail in the most productive environments, and abundance effects become dominant towards the most limiting conditions. These findings can contribute to refining cost-effective mitigation strategies based on fostering carbon storage through increased tree diversity. Specifically, in less productive environments, mitigation measures should promote abundance of locally adapted and stress tolerant tree species instead of increasing species richness. Correlations between tree species diversity and tree abundance are well established, but the direction of the relationship is unresolved. Here the authors use path models to estimate plausible causal pathways in the diversity-abundance relationship across 23 global forests regions, finding a lack of general support for a positive diversity-abundance relationship, which is prevalent in the most productive lands on Earth only
  •  
5.
  • Glasbey, JC, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view